supplementary materials


bv2215 scheme

Acta Cryst. (2013). E69, o236    [ doi:10.1107/S1600536813000822 ]

Glycine-D-tartaric acid (1/1)

T. Mohandas, C. R. D. Inbaseelan, S. Saravanan and P. Sakthivel

Abstract top

In the title co-crystal, C2H5NO2·C4H6O6, the gylcine molecule is present in the zwitterion form. In the tartaric acid molecule there is a short intramolecular O-H...O contact. In the crystal, the tartaric acid molecules are linked via pairs of O-H...O hydrogen bonds, forming inversion dimers. These dimers are linked via a number of O-H...O and N-H...O hydrogen bonds involving the two components, forming a three-dimensional network.

Comment top

Glycine is the simplest aminoacid that is not optically active. It is essential for biosynthesis of nucleic acids as well as the biosynthesis of bile acids, creatine phosphate and other amino acids. Its geometric features of non covalent interactions at atomic resolution are important in the structural assembly and functions of proteins.

In the title compound(I), glycine is in the zwitterionic form. The tartaric acid molecule is in the un-ionized state. The angle between the planes of the half molecules O1/O2/C1/C2/O3 and O5/O6/C4/C3/O4 is 62.74 (3)°, which is closer to the value of 54.6° found in the structure of tartaric acid.

Atoms C5,C6,O7,N1 are planar with the N1 atom is slightly displaced out of this plane by -0.518 (1)°.

The relevant torsion angles are O7—C5—C6—N1 of -158.33 (3)° and O8—C5—C6—N1 of 23.08 (3)°. These can be compared with the corresponding values in pure Γ glycine 167.1 (1)° and -15.4 (1)°, respectively (Kvick et al., (1980), which is more distorted from planarity.

The molecular structure of (I) is shown in the (Fig.1) and selected geometric parameters listed in Table 1. The bond lengths for C=N, C=O, C—C are within normal ranges (Allen 2002). The dihedral angle between planes of D-tartaric acid and glycine is 51.14 (9)°. The molecules related by the 21 screw along b axis are linked by intermolecular O—H···O hydrogen bond generating a supramolecular chain.

The carbon skeleton of tartaric molecule is non-planar with a C1—C2—C3—C4 torsion angle of 177.8 (1)°. Fig.2 shows the packing diagram in which there are a large number of N—H···O and O—H···O hydrogen bonds.

Related literature top

For related structures, see: Kvick et al. (1980). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Colourless single crystals were grown as transparent needles by slow evaporation method from a saturated aqueous solution containing glycine and D-tartaric acid in a 1:1 stoichiometric ratio.

Refinement top

All the hydrogen atoms were geometrically fixed and allowed to ride on their parent atoms with C—H = 0.97and 0.98 Å, and Uiso = 1.2eq(C). Hydrogen atoms attached to O and N were refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-NT (Bruker, 2004); data reduction: SAINT-NT and XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure and labelling scheme for (I) with displacement ellipsoid of non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for (I) is shown. Dashed line indicates intra and inter molecular N—H..O and O—H..O hydrogen bonding interactions
Glycine–D-tartaric acid (1/1) top
Crystal data top
C2H5NO2·C4H6O6F(000) = 472
Mr = 225.16Dx = 1.661 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1585 reflections
a = 4.8387 (2) Åθ = 2.0–25.0°
b = 9.2913 (4) ŵ = 0.16 mm1
c = 20.0273 (8) ÅT = 293 K
β = 90.171 (1)°Prism, colorless
V = 900.38 (6) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
2685 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 35.0°, θmin = 2.0°
ω and φ scanh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
k = 1412
Tmin = 0.954, Tmax = 0.969l = 2729
12500 measured reflections2 standard reflections every 100 reflections
3282 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0603P)2 + 0.1264P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3282 reflectionsΔρmax = 0.49 e Å3
165 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.074 (5)
Crystal data top
C2H5NO2·C4H6O6V = 900.38 (6) Å3
Mr = 225.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.8387 (2) ŵ = 0.16 mm1
b = 9.2913 (4) ÅT = 293 K
c = 20.0273 (8) Å0.30 × 0.20 × 0.20 mm
β = 90.171 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
2685 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
Rint = 0.033
Tmin = 0.954, Tmax = 0.969θmax = 35.0°
12500 measured reflections2 standard reflections every 100 reflections
3282 independent reflections intensity decay: none
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112Δρmax = 0.49 e Å3
S = 1.07Δρmin = 0.22 e Å3
3282 reflectionsAbsolute structure: ?
165 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.44851 (16)0.24734 (9)0.61943 (4)0.02360 (17)
C20.64567 (15)0.25044 (9)0.56018 (4)0.02271 (17)
H20.76880.16680.56240.027*
C30.47689 (16)0.24434 (9)0.49514 (4)0.02364 (17)
H30.37880.15210.49360.028*
C40.66706 (17)0.25298 (9)0.43493 (4)0.02490 (18)
C51.19172 (16)0.03299 (10)0.29340 (4)0.02399 (18)
C61.42473 (16)0.05011 (10)0.24364 (4)0.02740 (19)
H6A1.42960.14870.22780.033*
H6B1.59960.02970.26550.033*
N11.38776 (19)0.04805 (10)0.18645 (4)0.03233 (19)
O10.44118 (15)0.33804 (9)0.66214 (4)0.03694 (19)
O20.29078 (17)0.13348 (8)0.61631 (4)0.0395 (2)
O30.80456 (13)0.37788 (7)0.56436 (3)0.02782 (16)
O40.28015 (13)0.35571 (8)0.49377 (4)0.03210 (17)
O50.83917 (16)0.14540 (8)0.43321 (4)0.03596 (18)
O60.65303 (16)0.35172 (9)0.39549 (4)0.03701 (19)
O71.15307 (17)0.13761 (9)0.33148 (4)0.0417 (2)
O81.06398 (15)0.08344 (8)0.29288 (4)0.03465 (18)
H1A1.257 (4)0.008 (2)0.1562 (10)0.074 (5)*
H1B1.548 (3)0.0609 (17)0.1637 (8)0.054 (4)*
H1C1.320 (3)0.1370 (19)0.1966 (8)0.054 (4)*
H2A0.179 (4)0.122 (2)0.6533 (10)0.084 (6)*
H3A0.962 (4)0.3630 (18)0.5444 (8)0.060 (5)*
H4A0.323 (4)0.419 (2)0.4681 (9)0.070 (5)*
H50.938 (4)0.148 (2)0.3926 (10)0.072 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0228 (3)0.0263 (4)0.0218 (4)0.0020 (3)0.0057 (3)0.0023 (3)
C20.0223 (3)0.0226 (4)0.0233 (4)0.0009 (3)0.0083 (3)0.0002 (3)
C30.0237 (3)0.0245 (4)0.0228 (4)0.0023 (3)0.0076 (3)0.0001 (3)
C40.0267 (3)0.0266 (4)0.0214 (4)0.0040 (3)0.0066 (3)0.0039 (3)
C50.0221 (3)0.0284 (4)0.0215 (4)0.0024 (3)0.0093 (3)0.0027 (3)
C60.0225 (3)0.0333 (4)0.0265 (4)0.0000 (3)0.0109 (3)0.0026 (3)
N10.0387 (4)0.0315 (4)0.0269 (4)0.0084 (3)0.0162 (3)0.0021 (3)
O10.0369 (3)0.0426 (4)0.0314 (4)0.0110 (3)0.0154 (3)0.0113 (3)
O20.0484 (4)0.0366 (4)0.0335 (4)0.0202 (3)0.0196 (3)0.0046 (3)
O30.0226 (3)0.0297 (3)0.0313 (3)0.0064 (2)0.0107 (2)0.0030 (2)
O40.0259 (3)0.0358 (4)0.0347 (4)0.0050 (2)0.0120 (3)0.0079 (3)
O50.0447 (4)0.0324 (4)0.0309 (4)0.0075 (3)0.0155 (3)0.0028 (3)
O60.0398 (4)0.0399 (4)0.0314 (4)0.0031 (3)0.0145 (3)0.0089 (3)
O70.0490 (4)0.0382 (4)0.0380 (4)0.0039 (3)0.0231 (3)0.0107 (3)
O80.0368 (3)0.0314 (4)0.0358 (4)0.0059 (3)0.0189 (3)0.0019 (3)
Geometric parameters (Å, º) top
C1—O11.2014 (11)C5—O71.2499 (11)
C1—O21.3058 (10)C5—C61.5153 (10)
C1—C21.5250 (10)C6—N11.4746 (13)
C2—O31.4141 (10)C6—H6A0.9700
C2—C31.5364 (13)C6—H6B0.9700
C2—H20.9800N1—H1A0.953 (19)
C3—O41.4063 (11)N1—H1B0.909 (16)
C3—C41.5212 (10)N1—H1C0.914 (18)
C3—H30.9800O2—H2A0.93 (2)
C4—O61.2124 (11)O3—H3A0.870 (18)
C4—O51.3015 (11)O4—H4A0.81 (2)
C5—O81.2460 (11)O5—H50.944 (19)
O1—C1—O2125.71 (7)O8—C5—C6117.12 (7)
O1—C1—C2124.10 (7)O7—C5—C6115.63 (8)
O2—C1—C2110.19 (7)N1—C6—C5110.92 (7)
O3—C2—C1108.12 (7)N1—C6—H6A109.5
O3—C2—C3111.63 (7)C5—C6—H6A109.5
C1—C2—C3109.07 (6)N1—C6—H6B109.5
O3—C2—H2109.3C5—C6—H6B109.5
C1—C2—H2109.3H6A—C6—H6B108.0
C3—C2—H2109.3C6—N1—H1A109.2 (12)
O4—C3—C4110.90 (7)C6—N1—H1B111.6 (10)
O4—C3—C2110.33 (7)H1A—N1—H1B107.6 (15)
C4—C3—C2110.42 (6)C6—N1—H1C115.4 (10)
O4—C3—H3108.4H1A—N1—H1C105.0 (16)
C4—C3—H3108.4H1B—N1—H1C107.6 (14)
C2—C3—H3108.4C1—O2—H2A113.3 (13)
O6—C4—O5126.76 (7)C2—O3—H3A108.3 (11)
O6—C4—C3121.57 (8)C3—O4—H4A111.9 (14)
O5—C4—C3111.66 (7)C4—O5—H5109.4 (11)
O8—C5—O7127.24 (7)
O1—C1—C2—O31.72 (12)C1—C2—C3—C4177.86 (7)
O2—C1—C2—O3177.86 (8)O4—C3—C4—O64.99 (12)
O1—C1—C2—C3123.29 (10)C2—C3—C4—O6117.63 (9)
O2—C1—C2—C356.29 (9)O4—C3—C4—O5175.95 (8)
O3—C2—C3—O464.51 (8)C2—C3—C4—O561.43 (9)
C1—C2—C3—O454.91 (8)O8—C5—C6—N123.03 (11)
O3—C2—C3—C458.45 (8)O7—C5—C6—N1158.29 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.953 (19)2.20 (2)2.9509 (11)135.2 (16)
N1—H1A···O3i0.953 (19)2.21 (2)2.9386 (11)132.2 (15)
N1—H1B···O6ii0.909 (16)2.041 (16)2.9188 (10)162.0 (14)
N1—H1C···O7ii0.914 (18)2.172 (17)2.9492 (13)142.4 (14)
O2—H2A···O8iii0.93 (2)1.64 (2)2.5473 (8)167 (2)
O3—H3A···O4iv0.870 (18)1.849 (18)2.7122 (8)171.0 (16)
O4—H4A···O3v0.81 (2)2.09 (2)2.7654 (10)141.1 (18)
O4—H4A···O60.81 (2)2.251 (18)2.6743 (9)112.9 (16)
O5—H5···O70.944 (19)1.612 (19)2.5459 (9)169.2 (18)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+5/2, y1/2, z+1/2; (iii) x+1, y, z+1; (iv) x+1, y, z; (v) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.953 (19)2.20 (2)2.9509 (11)135.2 (16)
N1—H1A···O3i0.953 (19)2.21 (2)2.9386 (11)132.2 (15)
N1—H1B···O6ii0.909 (16)2.041 (16)2.9188 (10)162.0 (14)
N1—H1C···O7ii0.914 (18)2.172 (17)2.9492 (13)142.4 (14)
O2—H2A···O8iii0.93 (2)1.64 (2)2.5473 (8)167 (2)
O3—H3A···O4iv0.870 (18)1.849 (18)2.7122 (8)171.0 (16)
O4—H4A···O3v0.81 (2)2.09 (2)2.7654 (10)141.1 (18)
O4—H4A···O60.81 (2)2.251 (18)2.6743 (9)112.9 (16)
O5—H5···O70.944 (19)1.612 (19)2.5459 (9)169.2 (18)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+5/2, y1/2, z+1/2; (iii) x+1, y, z+1; (iv) x+1, y, z; (v) x+1, y+1, z+1.
Acknowledgements top

The authors thank Sona Engineering College, Salem, for providing the sample to carry out the X-ray study.

references
References top

Allen, F. H. (2002). Acta Cryst. B58, 380–388.

Bruker (2003). SADABS, SAINT-NT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Kvick, Å., Canning, W. M., Koetzle, T. F. & Williams, G. J. B. (1980). Acta Cryst. B36, 115–120.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.