supplementary materials


cv5369 scheme

Acta Cryst. (2013). E69, m91    [ doi:10.1107/S1600536812051744 ]

Dichloridodi-[mu]2-hydroxido-di-[mu]3-oxido-octaphenyltetratin(IV) dimethyl sulfoxide disolvate

S. Foladi, P. Khazaei, J. Attar Gharamaleki, B. Notash and M. K. Rofouei

Abstract top

In the centrosymmetric tetranuclear title molecule, [Sn4(C6H5)8Cl2O2(OH)2]·2C2H6OS, the two independent tinIV atoms show distorted trigonal-bipyramidal SnC2O3 and SnC2O2Cl coordination geometries. The four tinIV atoms are bridged by the hydroxo and oxo ligands, forming a ladder-like array of three edge-connected Sn2O2 squares. The solvent molecules are linked to the tetranuclear molecule via O-H...O hydrogen bonds.

Comment top

Organotin(IV) complexes have been studied due to the diversity of structures that such compounds can form and in view of their potential biological activities (Davies & Smith, 1982). Herewith we present the title compound (I).

In (I) (Fig. 1), all geometric parameters are normal and correspond to those reported for related compounds (Vollano et al., 1984; Kresinski et al., 1994) The similar structure with bromide (instead of chloride) anions was reported by Yap et al. (2010). All tin atoms are five-coordinated, form distorted trigonal–bipyramidal environments. Oxide or hydroxide groups play bridging role between Sn atoms. Each of the inner SnIV atoms is coordinated by three O atoms in the equatorial plane and two phenyl rings in axial position. The equatorial angle is shorter than ideally 180° being only 124.24 (11) °. The Sn2—O1 and Sn2—O2 bond distances are 2.0451 (18) and 2.1630 (19) Å, respectively. Each of the outer SnIV atoms is coordinated by one chloride and two O atoms in equatorial plane and axial positions are occupied by two phenyl rings. The Sn1—Cl1 bond distance is 2.4628 (9) Å and axial angle, C1—Sn2—C7 is 120.35 (11) °. The centrosymmetric tetrameric species bears a central part which consists of Sn2O2 ring with two adjacent Sn2O(OH) four-membered rings. This behavior is also consistent with the reported structure. The DMSO molecules accompany the tetranuclear compound by O2—H2A···O3 hydrogen bonds.

Related literature top

For biological applications of organotin(IV) complexes, see: Davies & Smith (1982). For the crystal structures of closely related compounds, see: Vollano et al. (1984); Kresinski et al. (1994); Yap et al. (2010).

Experimental top

The solution of 2-mercaptobenzaldehyde (2.76 g, 20 mmol) in 15 ml e thanol was added to solution of diethylamine (0.6 g, 10 mmol) in 10 ml e thanol. The obtained mixture was refluxed at 60 C for 4 h. The yellow crystals of the product was filtered off and dried. In order to synthesis of the title compound, the obtained ligand and dichloridediphenyltin were dissolved in DMSO at ambient temperature. Colourless crystals of the tetramer suitable for X-ray were obtained by slow evaporation of the solvent within one month.

Refinement top

O-bound H atom was found in a difference Fourier map and isotropically refined with O–H distance restraint of 0.824 (19) Å. C-bound H atoms were positioned geometrically and refined as riding atoms with C—H = 0.93-0.96 Å, and Uiso(H) = 1.2-1.5 Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atomic numbering and 50% probability displacement ellipsoids [symmetry code: (a) 2-x, -y, 2-z]. Solvent molecule and C-bound H atoms were omitted for clarity.
Dichloridodi-µ2-hydroxido-di-µ3-oxido-octaphenyltetratin(IV) dimethyl sulfoxide disolvate top
Crystal data top
[Sn4(C6H5)8Cl2O2(OH)2]·2C2H6OSF(000) = 1360
Mr = 1384.73Dx = 1.742 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7108 reflections
a = 11.521 (2) Åθ = 2.0–29.2°
b = 19.372 (4) ŵ = 2.10 mm1
c = 11.854 (2) ÅT = 298 K
β = 93.61 (3)°Block, colourless
V = 2640.4 (9) Å30.50 × 0.47 × 0.45 mm
Z = 2
Data collection top
STOE IPDS 2T
diffractometer
7108 independent reflections
Radiation source: fine-focus sealed tube6034 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
Detector resolution: 0.15 pixels mm-1θmax = 29.2°, θmin = 2.0°
rotation method scansh = 1514
Absorption correction: numerical
(X-RED32; Stoe & Cie, 2005)
k = 2626
Tmin = 0.420, Tmax = 0.452l = 1616
28831 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0328P)2 + 0.0145P]
where P = (Fo2 + 2Fc2)/3
7108 reflections(Δ/σ)max = 0.002
304 parametersΔρmax = 0.92 e Å3
1 restraintΔρmin = 0.83 e Å3
Crystal data top
[Sn4(C6H5)8Cl2O2(OH)2]·2C2H6OSV = 2640.4 (9) Å3
Mr = 1384.73Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.521 (2) ŵ = 2.10 mm1
b = 19.372 (4) ÅT = 298 K
c = 11.854 (2) Å0.50 × 0.47 × 0.45 mm
β = 93.61 (3)°
Data collection top
STOE IPDS 2T
diffractometer
7108 independent reflections
Absorption correction: numerical
(X-RED32; Stoe & Cie, 2005)
6034 reflections with I > 2σ(I)
Tmin = 0.420, Tmax = 0.452Rint = 0.095
28831 measured reflectionsθmax = 29.2°
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079Δρmax = 0.92 e Å3
S = 1.05Δρmin = 0.83 e Å3
7108 reflectionsAbsolute structure: ?
304 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.923073 (16)0.109727 (9)0.801260 (13)0.03225 (6)
Sn21.050659 (15)0.052478 (9)1.103601 (13)0.02920 (5)
Cl10.98076 (8)0.20923 (4)0.92137 (6)0.05121 (18)
S10.46511 (8)0.04222 (5)0.28731 (8)0.0587 (2)
O10.96963 (18)0.04965 (9)0.93664 (14)0.0343 (4)
O21.12468 (17)0.00375 (10)1.24848 (15)0.0344 (4)
O30.3549 (2)0.02385 (16)0.3395 (2)0.0620 (6)
C10.7530 (3)0.14934 (15)0.7610 (2)0.0386 (6)
C20.6974 (3)0.19241 (18)0.8329 (3)0.0491 (7)
H20.73090.20020.90520.059*
C30.5946 (4)0.2238 (2)0.8011 (4)0.0655 (11)
H30.55790.25180.85170.079*
C40.5453 (3)0.2137 (2)0.6929 (4)0.0697 (11)
H40.47640.23600.66970.084*
C50.5987 (4)0.1705 (2)0.6196 (3)0.0676 (11)
H50.56520.16300.54720.081*
C60.7027 (3)0.13809 (19)0.6540 (3)0.0508 (7)
H60.73830.10870.60460.061*
C71.0545 (3)0.11797 (15)0.6825 (2)0.0376 (6)
C81.0729 (3)0.06512 (18)0.6064 (2)0.0463 (7)
H81.02810.02530.60750.056*
C91.1578 (3)0.0713 (2)0.5289 (3)0.0558 (8)
H91.17040.03540.47900.067*
C101.2236 (3)0.1309 (2)0.5260 (3)0.0581 (9)
H101.27920.13570.47290.070*
C111.2069 (3)0.1829 (2)0.6012 (3)0.0605 (9)
H111.25200.22270.59990.073*
C121.1228 (3)0.17680 (18)0.6797 (3)0.0510 (8)
H121.11240.21240.73080.061*
C131.2033 (2)0.10738 (14)1.0699 (2)0.0343 (5)
C141.2472 (3)0.10957 (18)0.9635 (3)0.0491 (7)
H141.21150.08420.90450.059*
C151.3439 (3)0.1494 (2)0.9450 (3)0.0626 (10)
H151.37320.15060.87360.075*
C161.3969 (3)0.1874 (2)1.0319 (4)0.0640 (10)
H161.46140.21441.01860.077*
C171.3556 (3)0.18588 (19)1.1379 (3)0.0585 (9)
H171.39230.21121.19650.070*
C181.2580 (3)0.14597 (16)1.1566 (3)0.0431 (6)
H181.22900.14521.22810.052*
C190.9102 (2)0.09486 (14)1.1881 (2)0.0356 (5)
C200.9278 (3)0.11474 (17)1.3006 (2)0.0489 (8)
H200.99980.10751.33880.059*
C210.8387 (4)0.1453 (2)1.3562 (3)0.0680 (12)
H210.85120.15861.43130.082*
C220.7322 (4)0.1558 (2)1.3006 (4)0.0762 (14)
H220.67250.17591.33840.091*
C230.7139 (4)0.1373 (2)1.1918 (4)0.0757 (13)
H230.64150.14501.15480.091*
C240.8021 (3)0.10635 (18)1.1330 (3)0.0501 (8)
H240.78830.09371.05770.060*
C250.4630 (5)0.0023 (3)0.1581 (4)0.0878 (16)
H25A0.44870.05040.17080.132*
H25B0.53660.00310.12550.132*
H25C0.40240.01610.10740.132*
C260.5777 (4)0.0069 (3)0.3584 (4)0.0856 (15)
H26A0.58510.00630.43660.128*
H26B0.64980.00170.32430.128*
H26C0.55900.05510.35260.128*
H2A1.1948 (17)0.000 (2)1.265 (3)0.056 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03346 (10)0.03404 (10)0.02899 (9)0.00335 (7)0.00002 (7)0.00140 (6)
Sn20.02770 (9)0.03127 (9)0.02838 (9)0.00062 (6)0.00011 (6)0.00281 (6)
Cl10.0625 (5)0.0413 (4)0.0486 (4)0.0008 (3)0.0060 (3)0.0099 (3)
S10.0438 (5)0.0623 (6)0.0697 (5)0.0040 (4)0.0006 (4)0.0115 (4)
O10.0412 (11)0.0300 (9)0.0305 (8)0.0013 (8)0.0078 (7)0.0007 (6)
O20.0310 (10)0.0380 (10)0.0335 (8)0.0001 (8)0.0050 (7)0.0015 (7)
O30.0473 (14)0.0759 (18)0.0629 (14)0.0007 (13)0.0047 (11)0.0011 (13)
C10.0339 (14)0.0383 (14)0.0435 (14)0.0037 (11)0.0002 (11)0.0092 (11)
C20.0469 (18)0.0511 (18)0.0506 (16)0.0107 (14)0.0125 (14)0.0096 (13)
C30.056 (2)0.058 (2)0.086 (3)0.0166 (18)0.026 (2)0.0201 (19)
C40.0402 (18)0.068 (3)0.100 (3)0.0114 (18)0.0023 (19)0.034 (2)
C50.061 (2)0.072 (3)0.067 (2)0.004 (2)0.0175 (19)0.0212 (19)
C60.0478 (18)0.0527 (18)0.0509 (17)0.0036 (15)0.0049 (14)0.0092 (14)
C70.0392 (15)0.0417 (15)0.0318 (12)0.0018 (12)0.0014 (11)0.0048 (10)
C80.0459 (17)0.0531 (18)0.0400 (14)0.0018 (14)0.0040 (13)0.0037 (12)
C90.050 (2)0.076 (2)0.0417 (15)0.0036 (18)0.0085 (14)0.0083 (15)
C100.0400 (17)0.087 (3)0.0482 (17)0.0027 (18)0.0115 (14)0.0055 (17)
C110.053 (2)0.060 (2)0.069 (2)0.0105 (17)0.0147 (18)0.0113 (17)
C120.054 (2)0.0446 (17)0.0554 (17)0.0063 (14)0.0116 (15)0.0018 (13)
C130.0267 (12)0.0376 (14)0.0383 (13)0.0003 (10)0.0010 (10)0.0024 (10)
C140.0414 (17)0.065 (2)0.0411 (15)0.0018 (15)0.0037 (13)0.0044 (13)
C150.046 (2)0.081 (3)0.062 (2)0.0063 (19)0.0154 (17)0.0149 (18)
C160.0386 (18)0.066 (2)0.087 (3)0.0126 (17)0.0001 (18)0.021 (2)
C170.0457 (19)0.0465 (19)0.082 (2)0.0079 (15)0.0082 (17)0.0068 (16)
C180.0403 (16)0.0405 (15)0.0483 (15)0.0018 (12)0.0012 (12)0.0045 (12)
C190.0350 (14)0.0334 (13)0.0389 (13)0.0036 (11)0.0073 (11)0.0028 (10)
C200.057 (2)0.0464 (17)0.0440 (16)0.0026 (14)0.0115 (15)0.0073 (12)
C210.091 (3)0.054 (2)0.064 (2)0.003 (2)0.039 (2)0.0101 (16)
C220.076 (3)0.059 (2)0.099 (3)0.020 (2)0.053 (3)0.010 (2)
C230.050 (2)0.077 (3)0.103 (3)0.028 (2)0.026 (2)0.031 (2)
C240.0365 (16)0.060 (2)0.0539 (17)0.0081 (14)0.0049 (13)0.0122 (14)
C250.074 (3)0.123 (4)0.067 (2)0.034 (3)0.013 (2)0.002 (3)
C260.050 (2)0.105 (4)0.099 (3)0.007 (2)0.014 (2)0.033 (3)
Geometric parameters (Å, º) top
Sn1—O12.0271 (18)C10—C111.367 (6)
Sn1—C12.130 (3)C10—H100.9300
Sn1—C72.137 (3)C11—C121.389 (5)
Sn1—O2i2.196 (2)C11—H110.9300
Sn1—Cl12.4628 (9)C12—H120.9300
Sn2—O1i2.0451 (18)C13—C141.388 (4)
Sn2—C132.115 (3)C13—C181.390 (4)
Sn2—C192.121 (3)C14—C151.385 (5)
Sn2—O12.1351 (18)C14—H140.9300
Sn2—O22.1630 (19)C15—C161.377 (6)
S1—O31.490 (3)C15—H150.9300
S1—C251.757 (5)C16—C171.371 (5)
S1—C261.777 (4)C16—H160.9300
O1—Sn2i2.0451 (18)C17—C181.394 (5)
O2—Sn1i2.196 (2)C17—H170.9300
O2—H2A0.824 (19)C18—H180.9300
C1—C21.379 (4)C19—C241.387 (4)
C1—C61.379 (4)C19—C201.390 (4)
C2—C31.363 (5)C20—C211.387 (5)
C2—H20.9300C20—H200.9300
C3—C41.384 (6)C21—C221.370 (7)
C3—H30.9300C21—H210.9300
C4—C51.379 (6)C22—C231.343 (7)
C4—H40.9300C22—H220.9300
C5—C61.390 (5)C23—C241.402 (5)
C5—H50.9300C23—H230.9300
C6—H60.9300C24—H240.9300
C7—C121.387 (4)C25—H25A0.9600
C7—C81.389 (4)C25—H25B0.9600
C8—C91.389 (4)C25—H25C0.9600
C8—H80.9300C26—H26A0.9600
C9—C101.384 (6)C26—H26B0.9600
C9—H90.9300C26—H26C0.9600
O1—Sn1—C1125.30 (10)C11—C10—H10120.0
O1—Sn1—C7113.66 (10)C9—C10—H10120.0
C1—Sn1—C7120.35 (11)C10—C11—C12120.5 (4)
O1—Sn1—O2i74.05 (7)C10—C11—H11119.8
C1—Sn1—O2i93.75 (10)C12—C11—H11119.8
C7—Sn1—O2i93.94 (9)C7—C12—C11120.4 (3)
O1—Sn1—Cl186.75 (6)C7—C12—H12119.8
C1—Sn1—Cl193.34 (9)C11—C12—H12119.8
C7—Sn1—Cl198.39 (8)C14—C13—C18118.8 (3)
O2i—Sn1—Cl1160.17 (5)C14—C13—Sn2122.8 (2)
O1i—Sn2—C13121.78 (9)C18—C13—Sn2118.3 (2)
O1i—Sn2—C19113.91 (10)C15—C14—C13120.3 (3)
C13—Sn2—C19124.24 (11)C15—C14—H14119.9
O1i—Sn2—O173.87 (8)C13—C14—H14119.9
C13—Sn2—O199.07 (9)C16—C15—C14120.1 (3)
C19—Sn2—O198.37 (10)C16—C15—H15119.9
O1i—Sn2—O274.43 (7)C14—C15—H15119.9
C13—Sn2—O296.46 (9)C17—C16—C15120.7 (3)
C19—Sn2—O295.42 (9)C17—C16—H16119.6
O1—Sn2—O2148.27 (7)C15—C16—H16119.6
O3—S1—C25106.2 (2)C16—C17—C18119.2 (3)
O3—S1—C26106.9 (2)C16—C17—H17120.4
C25—S1—C2696.9 (3)C18—C17—H17120.4
Sn1—O1—Sn2i110.49 (8)C13—C18—C17120.8 (3)
Sn1—O1—Sn2142.90 (9)C13—C18—H18119.6
Sn2i—O1—Sn2106.13 (8)C17—C18—H18119.6
Sn2—O2—Sn1i100.26 (8)C24—C19—C20118.6 (3)
Sn2—O2—H2A118 (3)C24—C19—Sn2121.9 (2)
Sn1i—O2—H2A112 (3)C20—C19—Sn2119.4 (2)
C2—C1—C6118.6 (3)C21—C20—C19120.4 (4)
C2—C1—Sn1122.4 (2)C21—C20—H20119.8
C6—C1—Sn1118.5 (2)C19—C20—H20119.8
C3—C2—C1121.9 (4)C22—C21—C20120.1 (4)
C3—C2—H2119.0C22—C21—H21119.9
C1—C2—H2119.0C20—C21—H21119.9
C2—C3—C4119.5 (4)C23—C22—C21120.2 (3)
C2—C3—H3120.3C23—C22—H22119.9
C4—C3—H3120.3C21—C22—H22119.9
C5—C4—C3119.8 (3)C22—C23—C24121.1 (4)
C5—C4—H4120.1C22—C23—H23119.5
C3—C4—H4120.1C24—C23—H23119.5
C4—C5—C6120.0 (4)C19—C24—C23119.5 (4)
C4—C5—H5120.0C19—C24—H24120.2
C6—C5—H5120.0C23—C24—H24120.2
C1—C6—C5120.2 (4)S1—C25—H25A109.5
C1—C6—H6119.9S1—C25—H25B109.5
C5—C6—H6119.9H25A—C25—H25B109.5
C12—C7—C8118.7 (3)S1—C25—H25C109.5
C12—C7—Sn1120.2 (2)H25A—C25—H25C109.5
C8—C7—Sn1121.1 (2)H25B—C25—H25C109.5
C9—C8—C7120.6 (3)S1—C26—H26A109.5
C9—C8—H8119.7S1—C26—H26B109.5
C7—C8—H8119.7H26A—C26—H26B109.5
C10—C9—C8119.8 (3)S1—C26—H26C109.5
C10—C9—H9120.1H26A—C26—H26C109.5
C8—C9—H9120.1H26B—C26—H26C109.5
C11—C10—C9119.9 (3)
C1—Sn1—O1—Sn2i90.30 (14)O2i—Sn1—C7—C83.9 (2)
C7—Sn1—O1—Sn2i80.16 (12)Cl1—Sn1—C7—C8168.3 (2)
O2i—Sn1—O1—Sn2i7.14 (8)C12—C7—C8—C90.3 (5)
Cl1—Sn1—O1—Sn2i177.90 (9)Sn1—C7—C8—C9179.4 (3)
C1—Sn1—O1—Sn299.31 (19)C7—C8—C9—C100.9 (5)
C7—Sn1—O1—Sn290.23 (19)C8—C9—C10—C111.6 (6)
O2i—Sn1—O1—Sn2177.53 (19)C9—C10—C11—C121.0 (6)
Cl1—Sn1—O1—Sn27.51 (16)C8—C7—C12—C110.9 (5)
O1i—Sn2—O1—Sn1170.6 (2)Sn1—C7—C12—C11178.8 (3)
C13—Sn2—O1—Sn150.03 (19)C10—C11—C12—C70.3 (6)
C19—Sn2—O1—Sn176.80 (19)O1i—Sn2—C13—C1453.5 (3)
O2—Sn2—O1—Sn1168.40 (12)C19—Sn2—C13—C14129.8 (2)
O1i—Sn2—O1—Sn2i0.0O1—Sn2—C13—C1423.1 (3)
C13—Sn2—O1—Sn2i120.60 (10)O2—Sn2—C13—C14129.2 (2)
C19—Sn2—O1—Sn2i112.57 (10)O1i—Sn2—C13—C18130.2 (2)
O2—Sn2—O1—Sn2i2.2 (2)C19—Sn2—C13—C1846.5 (3)
O1i—Sn2—O2—Sn1i6.35 (7)O1—Sn2—C13—C18153.2 (2)
C13—Sn2—O2—Sn1i127.59 (9)O2—Sn2—C13—C1854.5 (2)
C19—Sn2—O2—Sn1i106.98 (10)C18—C13—C14—C150.2 (5)
O1—Sn2—O2—Sn1i8.58 (18)Sn2—C13—C14—C15176.5 (3)
O1—Sn1—C1—C260.3 (3)C13—C14—C15—C160.3 (6)
C7—Sn1—C1—C2129.9 (2)C14—C15—C16—C170.6 (6)
O2i—Sn1—C1—C2133.3 (2)C15—C16—C17—C180.8 (6)
Cl1—Sn1—C1—C228.1 (2)C14—C13—C18—C170.4 (5)
O1—Sn1—C1—C6127.6 (2)Sn2—C13—C18—C17176.9 (3)
C7—Sn1—C1—C642.3 (3)C16—C17—C18—C130.7 (5)
O2i—Sn1—C1—C654.5 (2)O1i—Sn2—C19—C2470.8 (3)
Cl1—Sn1—C1—C6144.0 (2)C13—Sn2—C19—C24112.2 (3)
C6—C1—C2—C30.1 (5)O1—Sn2—C19—C245.2 (3)
Sn1—C1—C2—C3172.2 (3)O2—Sn2—C19—C24146.2 (2)
C1—C2—C3—C41.4 (6)O1i—Sn2—C19—C20112.1 (2)
C2—C3—C4—C51.9 (6)C13—Sn2—C19—C2064.8 (3)
C3—C4—C5—C61.0 (6)O1—Sn2—C19—C20171.9 (2)
C2—C1—C6—C50.8 (5)O2—Sn2—C19—C2036.8 (2)
Sn1—C1—C6—C5171.6 (3)C24—C19—C20—C210.1 (5)
C4—C5—C6—C10.4 (6)Sn2—C19—C20—C21177.3 (3)
O1—Sn1—C7—C12102.1 (3)C19—C20—C21—C220.3 (6)
C1—Sn1—C7—C1286.9 (3)C20—C21—C22—C230.6 (6)
O2i—Sn1—C7—C12176.4 (3)C21—C22—C23—C240.5 (7)
Cl1—Sn1—C7—C1212.0 (3)C20—C19—C24—C230.2 (5)
O1—Sn1—C7—C878.2 (3)Sn2—C19—C24—C23177.3 (3)
C1—Sn1—C7—C892.8 (3)C22—C23—C24—C190.1 (6)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3ii0.82 (2)2.04 (2)2.851 (3)166 (4)
Symmetry code: (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.824 (19)2.04 (2)2.851 (3)166 (4)
Symmetry code: (i) x+1, y, z+1.
Acknowledgements top

none

references
References top

Davies, A. G. & Smith, P. G. (1982). Comprehensive Organometallic Chemistry, edited by G. Wilkinson, F. Gordon, A. Stone & E. W. Abel, pp. 519–616. New York: Pergamon Press.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Kresinski, R. A., Staples, R. J. & Fackler, J. P. (1994). Acta Cryst. C50, 40–41.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.

Vollano, J. F., Day, R. O. & Holmes, R. R. (1984). Organometallics, 3, 745–750.

Yap, Q. L., Lo, K. M. & Ng, S. W. (2010). Acta Cryst. E66, m8.