organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2H-Indazol-2-yl)-1-phenyl­ethanone

aDepartment of Chemistry, Bülent Ecevit University, 67100 Zonguldak, Turkey, bDepartment of Chemistry, Southampton University, SO17 1BJ Southampton, England, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 3 December 2012; accepted 24 December 2012; online 4 January 2013)

The asymmetric unit of the title compound, C15H12N2O, contains two independent mol­ecules with different conformations, the phenyl ring and indazole mean plane in the two mol­ecules forming dihedral angles of 50.82 (5) and 89.29 (6)°. In the crystal, weak C—H⋯O and C–H⋯N hydrogen bonds and C—H⋯π inter­actions consolidate the packing.

Related literature

For general background to the biological activity of indazole derivatives, see: Lebouvier et al. (2007[Lebouvier, N., Pagniez, F., Duflos, M., Le Pape, P., Na, Y. M., Le Baut, G. & Le Borgne, M. (2007). Bioorg. Med. Chem. Lett. 17, 3686-3689.]); Maggio et al. (2011[Maggio, B., Raimondi, M. V., Raffa, D., Plescia, F., Cascioferro, S., Plescia, S., Tolomeo, M., Di Cristina, A., Pipitone, R. M., Grimaudo, S. & Daidone, G. (2011). Eur. J. Med. Chem. 46, 168-174.]); Park et al. (2007[Park, J. S., Yu, K. A., Kang, T. H., Kim, S. & Suh, Y. G. (2007). Bioorg. Med. Chem. Lett. 17, 3486-3490.]); Plescia et al. (2010[Plescia, S., Raffa, D., Plescia, F., Casula, G., Maggio, B., Daidone, G., Raimondi, M. V., Cusimano, M. G., Bombieri, G. & Meneghetti, F. (2010). Arkivoc, pp. 163-177.]); Raffa et al. (2009[Raffa, D., Maggio, B., Cascioferro, S., Raimondi, M. V., Schillaci, D., Gallo, G., Daidone, G., Plescia, S., Meneghetti, F., Bombieri, G., Di Cristina, A., Pipitone, R. M., Grimaudo, S. & Tolomeo, M. (2009). Eur. J. Med. Chem. 44, 165-178.]). For related structures, see: Gerpe et al. (2007[Gerpe, A., Piro, O. E., Cerecetto, H. & Gonzales, M. (2007). J. Mol. Struct. 871, 98-107.]); Özel Güven et al. (2008a[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1358.],b[Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, o1604.]); Raffa et al. (2009[Raffa, D., Maggio, B., Cascioferro, S., Raimondi, M. V., Schillaci, D., Gallo, G., Daidone, G., Plescia, S., Meneghetti, F., Bombieri, G., Di Cristina, A., Pipitone, R. M., Grimaudo, S. & Tolomeo, M. (2009). Eur. J. Med. Chem. 44, 165-178.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N2O

  • Mr = 236.27

  • Monoclinic, P 21 /n

  • a = 9.4408 (3) Å

  • b = 17.9636 (5) Å

  • c = 13.9415 (4) Å

  • β = 99.247 (4)°

  • V = 2333.62 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • 23377 measured reflections

  • 5349 independent reflections

  • 3346 reflections with I > 2σ(I)

  • Rint = 0.084

  • 3 standard reflections every 2 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.129

  • S = 1.02

  • 5349 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1A/N2A/C9A/C10A/C15A and C10B–C15B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6A—H6A⋯O1Bi 0.93 2.53 3.418 (2) 159
C8A—H81⋯N2Aii 0.97 2.57 3.519 (3) 164
C8A—H82⋯O1Biii 0.97 2.41 3.176 (2) 135
C9B—H9BCg1iv 0.93 2.86 3.460 (2) 123
C3B—H3BCg2v 0.93 2.60 3.433 (2) 149
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Azole compounds have important biological activities. Some indazole derivatives have been known as antifungal (Lebouvier et al., 2007; Park et al., 2007) and antiproliferative agents (Raffa et al., 2009; Plescia et al., 2010; Maggio et al., 2011) and crystal structures have been reported (Gerpe et al., 2007; Raffa et al., 2009). Crystal structures of ketones similar to the titled compound having benzimidazole ring (Özel Güven et al., 2008a) and 1,2,4-triazole ring (Özel Güven et al., 2008b) have been reported. Now we report the crystal structure of the title indazole derivative, (I).

The asymmetric unit of (I) contains two crystallographically independent molecules (Fig. 1), in which the bond lengths and angles are generally within normal ranges. The indazole [B (N1A/N2A/C9A-C15A) and B' (N1B/N2B/C9B-C15B)] ring systems are approximately planar with maximum deviations of -0.013 (2)Å (for atom C13A) and -0.025 (2)Å (for atom C12B), respectively. Their mean planes are oriented with respect to the phenyl [A (C2A-C7A) and A' (C2B-C7B)] rings at dihedral angles of A/B = 50.82 (5) and A'/B' = 89.29 (6) °. The dihedral angles between the rings A, A' and B, B' are A/A' = 78.52 (7) and B/B' = 62.38 (5) °. Atoms C8A and C8B are -0.048 (2) and -0.088 (2) Å away from the corresponding indazole ring planes, while atoms C1A, O1A and C1B, O1B are -0.022 (2), 0.516 (2) Å and -0.024 (2), 0.039 (1) Å away from the corresponding phenyl ring planes.

In the crystal structure, weak intermolecular C—H···O and C—H···N hydrogen bonds, and C—H···π interactions (Table 1) consolidate the packing.

Related literature top

For general background to the biological activity of indazole derivatives, see: Lebouvier et al. (2007); Maggio et al. (2011); Park et al. (2007); Plescia et al. (2010); Raffa et al. (2009). For related structures, see: Gerpe et al. (2007); Özel Güven et al. (2008a,b); Raffa et al. (2009).

Experimental top

The title compound, (I), was synthesized by the reaction of 2-bromo-1-phenylethanone with 1H-imidazole. A mixture of 2-bromo-1-phenylethanone (0.842 g, 4.232 mmol) and 1H-imidazole (1 g, 8.465 mmol) was refluxed in toluene (40 ml) for 9 h. After evaporation of the solvent, the formed precipitate was purified by column chromatography using hexane-ethylacetate (5:1) mixture, and then crystallized from chloroform to obtain colorless crystals suitable for X-ray analysis (yield; 0.22 g, 22%).

Refinement top

H atoms were positioned geometrically with C—H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Two independent molecules in (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
2-(2H-Indazol-2-yl)-1-phenylethanone top
Crystal data top
C15H12N2OF(000) = 992
Mr = 236.27Dx = 1.345 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 15539 reflections
a = 9.4408 (3) Åθ = 3.1–27.5°
b = 17.9636 (5) ŵ = 0.09 mm1
c = 13.9415 (4) ÅT = 100 K
β = 99.247 (4)°Prism, colorless
V = 2333.62 (12) Å30.20 × 0.20 × 0.20 mm
Z = 8
Data collection top
Rigaku Saturn724+
diffractometer
Rint = 0.084
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 3.1°
Graphite monochromatorh = 1212
profile data from ω–scansk = 2123
23377 measured reflectionsl = 1818
5349 independent reflections3 standard reflections every 2 min
3346 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0558P)2]
where P = (Fo2 + 2Fc2)/3
5349 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H12N2OV = 2333.62 (12) Å3
Mr = 236.27Z = 8
Monoclinic, P21/nMo Kα radiation
a = 9.4408 (3) ŵ = 0.09 mm1
b = 17.9636 (5) ÅT = 100 K
c = 13.9415 (4) Å0.20 × 0.20 × 0.20 mm
β = 99.247 (4)°
Data collection top
Rigaku Saturn724+
diffractometer
Rint = 0.084
23377 measured reflections3 standard reflections every 2 min
5349 independent reflections intensity decay: 1%
3346 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
5349 reflectionsΔρmin = 0.24 e Å3
325 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.14439 (19)0.58400 (8)0.50109 (10)0.0407 (5)
N1A0.26416 (18)0.46418 (9)0.42124 (11)0.0201 (4)
N2A0.36687 (18)0.49886 (9)0.37948 (11)0.0215 (4)
C1A0.2002 (2)0.53784 (11)0.55820 (14)0.0229 (5)
C2A0.2122 (2)0.54710 (10)0.66507 (13)0.0184 (4)
C3A0.2094 (2)0.48688 (11)0.72716 (14)0.0229 (5)
H3A0.19930.43890.70200.028*
C4A0.2214 (2)0.49816 (11)0.82645 (14)0.0255 (5)
H4A0.21730.45790.86780.031*
C5A0.2394 (2)0.56951 (11)0.86395 (14)0.0240 (5)
H5A0.24820.57700.93060.029*
C6A0.2443 (2)0.62952 (11)0.80282 (14)0.0239 (5)
H6A0.25830.67730.82830.029*
C7A0.2285 (2)0.61847 (11)0.70379 (14)0.0225 (5)
H7A0.22860.65910.66250.027*
C8A0.2702 (2)0.46866 (11)0.52526 (13)0.0236 (5)
H810.36990.46760.55610.028*
H820.22340.42520.54700.028*
C9A0.1661 (2)0.42712 (11)0.35829 (13)0.0221 (5)
H9A0.08800.40030.37290.026*
C10A0.2049 (2)0.43697 (10)0.26711 (13)0.0196 (4)
C11A0.1489 (2)0.41293 (11)0.17170 (14)0.0236 (5)
H11A0.06630.38400.15950.028*
C12A0.2199 (2)0.43368 (11)0.09856 (14)0.0255 (5)
H12A0.18490.41870.03540.031*
C13A0.3461 (2)0.47761 (11)0.11623 (14)0.0263 (5)
H13A0.39220.49000.06430.032*
C14A0.4020 (2)0.50222 (11)0.20685 (14)0.0246 (5)
H14A0.48440.53140.21750.030*
C15A0.3296 (2)0.48162 (10)0.28413 (13)0.0191 (4)
O1B0.19943 (15)0.80396 (7)0.10890 (9)0.0229 (3)
N1B0.01229 (18)0.77510 (9)0.00267 (11)0.0195 (4)
N2B0.00706 (18)0.70086 (9)0.01224 (11)0.0202 (4)
C1B0.0784 (2)0.80142 (10)0.15520 (13)0.0187 (4)
C2B0.0524 (2)0.80064 (10)0.26292 (13)0.0177 (4)
C3B0.0848 (2)0.79327 (12)0.31651 (14)0.0251 (5)
H3B0.16350.78800.28460.030*
C4B0.1043 (2)0.79378 (13)0.41696 (14)0.0312 (5)
H4B0.19600.78870.45250.037*
C5B0.0122 (2)0.80181 (12)0.46459 (14)0.0267 (5)
H5B0.00160.80310.53210.032*
C6B0.1488 (2)0.80796 (11)0.41253 (13)0.0220 (5)
H6B0.22710.81230.44500.026*
C7B0.1694 (2)0.80764 (10)0.31214 (13)0.0193 (4)
H7B0.26160.81210.27720.023*
C8B0.0503 (2)0.80013 (12)0.10227 (13)0.0220 (5)
H830.09100.84970.10280.026*
H840.12300.76730.13640.026*
C9B0.0048 (2)0.81611 (11)0.07851 (13)0.0200 (5)
H9B0.00250.86760.08260.024*
C10B0.0357 (2)0.76636 (11)0.15582 (13)0.0173 (4)
C11B0.0610 (2)0.77194 (11)0.25834 (13)0.0209 (5)
H11B0.06270.81790.28910.025*
C12B0.0828 (2)0.70741 (11)0.31061 (13)0.0215 (5)
H12B0.09690.70980.37810.026*
C13B0.0847 (2)0.63700 (11)0.26516 (14)0.0218 (5)
H13B0.10130.59460.30350.026*
C14B0.0627 (2)0.62993 (11)0.16617 (14)0.0214 (5)
H14B0.06510.58360.13670.026*
C15B0.0363 (2)0.69534 (11)0.11057 (13)0.0179 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0671 (13)0.0324 (9)0.0216 (8)0.0229 (9)0.0043 (8)0.0037 (7)
N1A0.0220 (10)0.0202 (9)0.0183 (8)0.0025 (8)0.0036 (7)0.0013 (7)
N2A0.0221 (10)0.0222 (9)0.0195 (9)0.0008 (8)0.0015 (7)0.0010 (7)
C1A0.0273 (12)0.0217 (11)0.0200 (10)0.0018 (9)0.0043 (9)0.0035 (9)
C2A0.0168 (11)0.0197 (11)0.0188 (10)0.0016 (8)0.0034 (8)0.0002 (8)
C3A0.0257 (12)0.0185 (11)0.0250 (11)0.0011 (9)0.0052 (9)0.0012 (9)
C4A0.0324 (13)0.0230 (11)0.0221 (10)0.0034 (10)0.0071 (9)0.0051 (9)
C5A0.0244 (12)0.0292 (12)0.0189 (10)0.0055 (10)0.0050 (9)0.0000 (9)
C6A0.0233 (12)0.0211 (11)0.0276 (11)0.0016 (9)0.0051 (9)0.0043 (9)
C7A0.0260 (12)0.0182 (11)0.0241 (11)0.0026 (9)0.0069 (9)0.0032 (8)
C8A0.0270 (12)0.0250 (11)0.0177 (10)0.0042 (10)0.0001 (9)0.0014 (9)
C9A0.0202 (11)0.0205 (11)0.0257 (11)0.0006 (9)0.0046 (9)0.0025 (9)
C10A0.0192 (11)0.0169 (10)0.0223 (10)0.0031 (9)0.0021 (8)0.0028 (8)
C11A0.0218 (12)0.0208 (11)0.0265 (11)0.0000 (9)0.0009 (9)0.0041 (9)
C12A0.0306 (13)0.0267 (12)0.0176 (10)0.0044 (10)0.0012 (9)0.0048 (9)
C13A0.0301 (13)0.0281 (12)0.0218 (11)0.0043 (10)0.0072 (9)0.0019 (9)
C14A0.0230 (12)0.0230 (11)0.0268 (11)0.0020 (9)0.0009 (9)0.0017 (9)
C15A0.0213 (11)0.0176 (10)0.0174 (10)0.0037 (8)0.0002 (8)0.0010 (8)
O1B0.0217 (8)0.0265 (8)0.0193 (7)0.0010 (6)0.0002 (6)0.0010 (6)
N1B0.0206 (10)0.0218 (9)0.0162 (8)0.0006 (7)0.0030 (7)0.0001 (7)
N2B0.0209 (10)0.0200 (9)0.0189 (8)0.0002 (7)0.0003 (7)0.0013 (7)
C1B0.0231 (12)0.0121 (10)0.0198 (10)0.0015 (9)0.0002 (9)0.0011 (8)
C2B0.0197 (11)0.0151 (10)0.0187 (9)0.0038 (8)0.0041 (8)0.0001 (8)
C3B0.0205 (12)0.0347 (13)0.0211 (10)0.0012 (10)0.0063 (9)0.0017 (9)
C4B0.0217 (13)0.0483 (15)0.0224 (11)0.0012 (11)0.0005 (9)0.0044 (10)
C5B0.0301 (13)0.0343 (13)0.0156 (10)0.0081 (10)0.0032 (9)0.0019 (9)
C6B0.0269 (13)0.0205 (11)0.0210 (10)0.0015 (9)0.0108 (9)0.0035 (8)
C7B0.0174 (11)0.0150 (10)0.0243 (10)0.0007 (8)0.0006 (9)0.0002 (8)
C8B0.0181 (11)0.0291 (12)0.0173 (10)0.0027 (9)0.0010 (8)0.0005 (9)
C9B0.0219 (12)0.0194 (11)0.0191 (10)0.0005 (9)0.0048 (9)0.0021 (8)
C10B0.0130 (10)0.0217 (11)0.0170 (10)0.0015 (8)0.0023 (8)0.0005 (8)
C11B0.0187 (11)0.0249 (11)0.0197 (10)0.0001 (9)0.0046 (9)0.0030 (9)
C12B0.0166 (11)0.0319 (12)0.0158 (9)0.0009 (9)0.0022 (8)0.0009 (9)
C13B0.0215 (11)0.0219 (11)0.0216 (10)0.0013 (9)0.0016 (9)0.0032 (8)
C14B0.0215 (12)0.0187 (11)0.0243 (11)0.0001 (9)0.0047 (9)0.0022 (9)
C15B0.0133 (10)0.0243 (11)0.0160 (9)0.0019 (9)0.0023 (8)0.0000 (8)
Geometric parameters (Å, º) top
O1A—C1A1.210 (2)O1B—C1B1.219 (2)
N1A—C8A1.444 (2)N1B—C8B1.449 (2)
N1A—C9A1.345 (2)N1B—C9B1.338 (2)
N2A—N1A1.360 (2)N2B—N1B1.357 (2)
N2A—C15A1.355 (2)N2B—C15B1.358 (2)
C1A—C2A1.485 (3)C1B—C8B1.520 (3)
C1A—C8A1.513 (3)C2B—C1B1.482 (3)
C2A—C3A1.388 (3)C2B—C3B1.394 (3)
C2A—C7A1.390 (3)C2B—C7B1.396 (3)
C3A—C4A1.385 (3)C3B—C4B1.383 (3)
C3A—H3A0.9300C3B—H3B0.9300
C4A—H4A0.9300C4B—H4B0.9300
C5A—C4A1.384 (3)C5B—C4B1.380 (3)
C5A—C6A1.380 (3)C5B—H5B0.9300
C5A—H5A0.9300C6B—C5B1.379 (3)
C6A—H6A0.9300C6B—C7B1.382 (2)
C7A—C6A1.379 (3)C6B—H6B0.9300
C7A—H7A0.9300C7B—H7B0.9300
C8A—H810.9700C8B—H830.9700
C8A—H820.9700C8B—H840.9700
C9A—C10A1.389 (3)C9B—C10B1.395 (3)
C9A—H9A0.9300C9B—H9B0.9300
C10A—C11A1.417 (3)C10B—C11B1.414 (2)
C11A—H11A0.9300C11B—C12B1.367 (3)
C12A—C11A1.360 (3)C11B—H11B0.9300
C12A—H12A0.9300C12B—H12B0.9300
C13A—C12A1.417 (3)C13B—C12B1.416 (3)
C13A—C14A1.362 (3)C13B—C14B1.368 (3)
C13A—H13A0.9300C13B—H13B0.9300
C14A—H14A0.9300C14B—H14B0.9300
C15A—C10A1.413 (3)C15B—C10B1.424 (3)
C15A—C14A1.415 (3)C15B—C14B1.408 (3)
N2A—N1A—C8A119.24 (16)N2B—N1B—C8B117.27 (15)
C9A—N1A—N2A114.25 (15)C9B—N1B—N2B114.60 (15)
C9A—N1A—C8A126.50 (17)C9B—N1B—C8B128.12 (17)
C15A—N2A—N1A102.99 (15)N1B—N2B—C15B103.12 (15)
O1A—C1A—C2A122.58 (18)O1B—C1B—C2B121.69 (18)
O1A—C1A—C8A121.89 (17)O1B—C1B—C8B119.85 (16)
C2A—C1A—C8A115.43 (16)C2B—C1B—C8B118.45 (17)
C3A—C2A—C1A122.15 (17)C3B—C2B—C1B122.16 (18)
C3A—C2A—C7A119.24 (17)C3B—C2B—C7B119.05 (17)
C7A—C2A—C1A118.61 (17)C7B—C2B—C1B118.79 (18)
C2A—C3A—H3A119.9C2B—C3B—H3B119.9
C4A—C3A—C2A120.15 (19)C4B—C3B—C2B120.2 (2)
C4A—C3A—H3A119.9C4B—C3B—H3B119.9
C3A—C4A—H4A120.1C3B—C4B—H4B119.9
C5A—C4A—C3A119.87 (19)C5B—C4B—C3B120.1 (2)
C5A—C4A—H4A120.1C5B—C4B—H4B119.9
C4A—C5A—H5A119.9C4B—C5B—H5B119.8
C6A—C5A—C4A120.30 (18)C6B—C5B—C4B120.34 (18)
C6A—C5A—H5A119.9C6B—C5B—H5B119.8
C5A—C6A—H6A120.1C5B—C6B—C7B119.99 (19)
C7A—C6A—C5A119.80 (19)C5B—C6B—H6B120.0
C7A—C6A—H6A120.1C7B—C6B—H6B120.0
C2A—C7A—H7A119.7C2B—C7B—H7B119.8
C6A—C7A—C2A120.60 (18)C6B—C7B—C2B120.31 (19)
C6A—C7A—H7A119.7C6B—C7B—H7B119.8
N1A—C8A—C1A113.68 (16)N1B—C8B—C1B112.07 (16)
N1A—C8A—H81108.8N1B—C8B—H83109.2
N1A—C8A—H82108.8N1B—C8B—H84109.2
C1A—C8A—H81108.8C1B—C8B—H83109.2
C1A—C8A—H82108.8C1B—C8B—H84109.2
H81—C8A—H82107.7H83—C8B—H84107.9
N1A—C9A—C10A106.21 (18)N1B—C9B—C10B106.42 (17)
N1A—C9A—H9A126.9N1B—C9B—H9B126.8
C10A—C9A—H9A126.9C10B—C9B—H9B126.8
C9A—C10A—C11A134.95 (19)C9B—C10B—C11B135.73 (18)
C9A—C10A—C15A104.68 (17)C9B—C10B—C15B104.30 (16)
C15A—C10A—C11A120.37 (18)C11B—C10B—C15B119.96 (17)
C12A—C11A—C10A117.76 (19)C10B—C11B—H11B121.1
C12A—C11A—H11A121.1C12B—C11B—C10B117.71 (18)
C10A—C11A—H11A121.1C12B—C11B—H11B121.1
C11A—C12A—C13A121.64 (18)C11B—C12B—C13B122.04 (17)
C11A—C12A—H12A119.2C11B—C12B—H12B119.0
C13A—C12A—H12A119.2C13B—C12B—H12B119.0
C12A—C13A—H13A118.9C12B—C13B—H13B119.2
C14A—C13A—C12A122.1 (2)C14B—C13B—C12B121.56 (18)
C14A—C13A—H13A118.9C14B—C13B—H13B119.2
C13A—C14A—C15A117.3 (2)C13B—C14B—C15B117.57 (18)
C13A—C14A—H14A121.3C13B—C14B—H14B121.2
C15A—C14A—H14A121.3C15B—C14B—H14B121.2
N2A—C15A—C10A111.87 (17)N2B—C15B—C10B111.55 (17)
N2A—C15A—C14A127.32 (19)N2B—C15B—C14B127.32 (18)
C10A—C15A—C14A120.80 (17)C14B—C15B—C10B121.12 (16)
N2A—N1A—C8A—C1A85.3 (2)N2B—N1B—C8B—C1B77.3 (2)
C9A—N1A—C8A—C1A96.0 (2)C9B—N1B—C8B—C1B103.7 (2)
N2A—N1A—C9A—C10A0.2 (2)N2B—N1B—C9B—C10B1.2 (2)
C8A—N1A—C9A—C10A178.57 (17)C8B—N1B—C9B—C10B177.81 (18)
C15A—N2A—N1A—C8A178.61 (16)C15B—N2B—N1B—C8B178.14 (16)
C15A—N2A—N1A—C9A0.3 (2)C15B—N2B—N1B—C9B1.0 (2)
N1A—N2A—C15A—C10A0.2 (2)N1B—N2B—C15B—C10B0.4 (2)
N1A—N2A—C15A—C14A178.65 (19)N1B—N2B—C15B—C14B178.66 (19)
O1A—C1A—C2A—C3A148.4 (2)O1B—C1B—C8B—N1B21.2 (3)
O1A—C1A—C2A—C7A32.3 (3)C2B—C1B—C8B—N1B159.71 (16)
C8A—C1A—C2A—C3A35.1 (3)C3B—C2B—C1B—O1B176.09 (18)
C8A—C1A—C2A—C7A144.24 (19)C3B—C2B—C1B—C8B4.8 (3)
O1A—C1A—C8A—N1A0.4 (3)C7B—C2B—C1B—O1B4.0 (3)
C2A—C1A—C8A—N1A176.21 (17)C7B—C2B—C1B—C8B175.09 (17)
C1A—C2A—C3A—C4A179.82 (19)C1B—C2B—C3B—C4B179.16 (19)
C7A—C2A—C3A—C4A0.5 (3)C7B—C2B—C3B—C4B0.7 (3)
C1A—C2A—C7A—C6A178.09 (19)C1B—C2B—C7B—C6B179.28 (17)
C3A—C2A—C7A—C6A1.2 (3)C3B—C2B—C7B—C6B0.6 (3)
C2A—C3A—C4A—C5A1.4 (3)C2B—C3B—C4B—C5B0.2 (3)
C6A—C5A—C4A—C3A0.5 (3)C6B—C5B—C4B—C3B1.2 (3)
C4A—C5A—C6A—C7A1.2 (3)C7B—C6B—C5B—C4B1.3 (3)
C2A—C7A—C6A—C5A2.1 (3)C5B—C6B—C7B—C2B0.4 (3)
N1A—C9A—C10A—C11A179.7 (2)N1B—C9B—C10B—C11B177.8 (2)
N1A—C9A—C10A—C15A0.1 (2)N1B—C9B—C10B—C15B0.8 (2)
C9A—C10A—C11A—C12A179.0 (2)C9B—C10B—C11B—C12B177.4 (2)
C15A—C10A—C11A—C12A0.6 (3)C15B—C10B—C11B—C12B1.1 (3)
C13A—C12A—C11A—C10A0.2 (3)C10B—C11B—C12B—C13B1.8 (3)
C14A—C13A—C12A—C11A0.9 (3)C14B—C13B—C12B—C11B0.9 (3)
C12A—C13A—C14A—C15A0.6 (3)C12B—C13B—C14B—C15B0.7 (3)
N2A—C15A—C10A—C9A0.1 (2)N2B—C15B—C10B—C9B0.3 (2)
N2A—C15A—C10A—C11A179.87 (17)N2B—C15B—C10B—C11B178.66 (17)
C14A—C15A—C10A—C9A178.84 (18)C14B—C15B—C10B—C9B179.40 (18)
C14A—C15A—C10A—C11A0.9 (3)C14B—C15B—C10B—C11B0.5 (3)
N2A—C15A—C14A—C13A179.07 (19)N2B—C15B—C14B—C13B177.60 (19)
C10A—C15A—C14A—C13A0.3 (3)C10B—C15B—C14B—C13B1.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1A/N2A/C9A/C10A/C15A and C10B–C15B rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6A—H6A···O1Bi0.932.533.418 (2)159
C8A—H81···N2Aii0.972.573.519 (3)164
C8A—H82···O1Biii0.972.413.176 (2)135
C9B—H9B···Cg1iv0.932.863.460 (2)123
C3B—H3B···Cg2v0.932.603.433 (2)149
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H12N2O
Mr236.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.4408 (3), 17.9636 (5), 13.9415 (4)
β (°) 99.247 (4)
V3)2333.62 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Saturn724+
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
23377, 5349, 3346
Rint0.084
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.129, 1.02
No. of reflections5349
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.24

Computer programs: CrystalClear-SM Expert (Rigaku, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX publication routines (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1A/N2A/C9A/C10A/C15A and C10B–C15B rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6A—H6A···O1Bi0.932.533.418 (2)159
C8A—H81···N2Aii0.972.573.519 (3)164
C8A—H82···O1Biii0.972.413.176 (2)135
C9B—H9B···Cg1iv0.932.863.460 (2)123
C3B—H3B···Cg2v0.932.603.433 (2)149
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x1/2, y1/2, z1/2.
 

Acknowledgements

The authors acknowledge the Zonguldak Karaelmas University Research Fund (project No. 2012-10-03-12).

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGerpe, A., Piro, O. E., Cerecetto, H. & Gonzales, M. (2007). J. Mol. Struct. 871, 98–107.  Web of Science CSD CrossRef CAS Google Scholar
First citationLebouvier, N., Pagniez, F., Duflos, M., Le Pape, P., Na, Y. M., Le Baut, G. & Le Borgne, M. (2007). Bioorg. Med. Chem. Lett. 17, 3686–3689.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaggio, B., Raimondi, M. V., Raffa, D., Plescia, F., Cascioferro, S., Plescia, S., Tolomeo, M., Di Cristina, A., Pipitone, R. M., Grimaudo, S. & Daidone, G. (2011). Eur. J. Med. Chem. 46, 168–174.  Web of Science CrossRef CAS PubMed Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, o1604.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPark, J. S., Yu, K. A., Kang, T. H., Kim, S. & Suh, Y. G. (2007). Bioorg. Med. Chem. Lett. 17, 3486–3490.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPlescia, S., Raffa, D., Plescia, F., Casula, G., Maggio, B., Daidone, G., Raimondi, M. V., Cusimano, M. G., Bombieri, G. & Meneghetti, F. (2010). Arkivoc, pp. 163–177.  CrossRef Google Scholar
First citationRaffa, D., Maggio, B., Cascioferro, S., Raimondi, M. V., Schillaci, D., Gallo, G., Daidone, G., Plescia, S., Meneghetti, F., Bombieri, G., Di Cristina, A., Pipitone, R. M., Grimaudo, S. & Tolomeo, M. (2009). Eur. J. Med. Chem. 44, 165–178.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds