organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o273-o274

(4R*,4aR*,7aS*)-5-Oxo-6-phenyl-4a,5,6,7,7a,8-hexa­hydro-4H-furo[2,3-f]iso­indole-4-carb­­oxy­lic acid

aDepartment of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla and Mefodiya 6, Lviv 79005, Ukraine, bDepartment of Organic Chemistry, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, cFaculty of Chemistry, University of Wrocław, 14 Joliot-Curie St, 50-383 Wrocław, Poland, and dInstitute of Low Temperature and Structure Research, Okolna 2, 50-422 Wrocław, Poland
*Correspondence e-mail: horrak@gmail.com

(Received 5 January 2013; accepted 15 January 2013; online 23 January 2013)

The asymmetric unit of the title compound, C17H15NO4, contains two independent mol­ecules with similar geometric parameters. In both mol­ecules, the conformation of the cyclo­hexene ring is half-chair, while the pyrrolidinone ring adopts an envelope conformation with the γ-carbon atom of the α-pyrrolidinone ring as the flap. In the crystal, O—H⋯O hydrogen bonds between the carb­oxylic and carbonyl groups link alternate independent mol­ecules into chains propagating in the b-axis direction. The crystal packing also features weak C—H⋯π inter­actions.

Related literature

For the intra­molecular Diels–Alder reaction of vinyl­furanes, see: Patre et al. (2007[Patre, E. R., Gawas, S., Sen, S., Parameswaran, P. S. & Tilve, S. G. (2007). Tetrahedron Lett. 48, 3517-3520.]). For related solid-phase Diels–Alder reaction with vinyl benzenes, see: Sun et al. (2000[Sun, S., Turchi, I. J., Xu, D. & Murray, W. V. (2000). J. Org. Chem. 65, 2555-2559.]). For palladium-catalysed tandem cyclization of allenes with heteroaryl­halides, see: Ohno et al. (2005[Ohno, H., Miyamura, K., Mizutani, T., Kadoh, Y., Takeoka, Y., Hamaguchi, H. & Tanaka, T. (2005). Chem. Eur. J. 11, 3728-3741.]). For heterolignan derivatives, see: Ramos et al. (1999[Ramos, A. C., Pelaez-Lamamie de Clairac, R. & Medarde, M. (1999). Heterocycles, 51, 1443-1470.]); Leteurtre et al. (1992[Leteurtre, F., Madalengoitia, J., Orr, A., Guzi, T., Lehnert, E., MacDonald, T. & Pommier, Y. (1992). Cancer Res. 52, 4478-4483.]) and for their pharmaceutical properties, see: Iwasaki et al. (1996[Iwasaki, T., Kondo, K., Kuroda, T., Moritani, Y., Yamagata, S., Sugiura, M., Kikkawa, H., Kaminuma, O. & Ikezawa, K. (1996). J. Med. Chem. 39, 2696-2704.]); Ducharme et al. (1994[Ducharme, Y., Brideau, C., Dube, D., Chan, C. C., Falgueyret, J. P., Gillard, J. W., Guay, J., Hutchison, J. H., McFarlane, C. S., Riendeau, D., Scheigetz, J. & Girard, Y. (1994). J. Med. Chem. 37, 512-518.]). For a related structure, see: Obushak et al. (2011[Obushak, M. D., Horak, Y. I., Zaytsev, V. P., Motorygina, E. L., Zubkov, F. I. & Khrustalev, V. N. (2011). Acta Cryst. E67, o3031-o3032.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15NO4

  • Mr = 297.30

  • Orthorhombic, P b c a

  • a = 12.107 (4) Å

  • b = 16.945 (5) Å

  • c = 27.370 (9) Å

  • V = 5615 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 K

  • 0.64 × 0.42 × 0.28 mm

Data collection
  • Kuma KM-4-CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wroclaw, Poland.]) Tmin = 0.972, Tmax = 1.000

  • 84648 measured reflections

  • 13130 independent reflections

  • 9304 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.127

  • S = 1.03

  • 13130 reflections

  • 399 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C13A–C18A and O1A–C5A rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3B—H3B1⋯O4A 0.84 1.83 2.6517 (11) 165
O3A—H3A1⋯O4Bi 0.84 1.79 2.6329 (10) 178
C8A—H8ACg1ii 1.00 2.50 3.4710 (14) 165
C15A—H15ACg2iii 0.95 2.63 3.5470 (15) 162
C18A—H18BCg2iv 0.99 2.72 3.5492 (14) 141
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wroclaw, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wroclaw, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recently, the researchers attention was drawn to such class of compounds as heterolignans (Figure 1) (Ramos et al., 1999). The best known heterolignan is azatoxin, which has antineoplastic activity (Leteurtre et al., 1992). In addition, it should be noted that a number heterolignans show anticancer, antirheumatic and antiasthmatic activity (Iwasaki et al., 1996; Ducharme et al., 1994). There are two important aspects of the synthesis of these compounds. First, as biological activity investigations have shown, the replacement of carbon atoms by heteroatoms in the cycle, or the replacement of benzene fragments by heterocycles, has little effect on biological activity. Second, from the synthetic point of view C–heteroatom bonds are easier accesible than C–C bonds. In addition to this, structural variability and synthetic availability of heterocycles are significantly higher than benzene fragments.

Considering mentioned above, synthesis of lignan analogues or their synthetic precursors, including those with furan cycles, are contemporary tasks. It was found that in the reaction of maleic anhydride and [3-(2-furyl)-2-propenyl]-phenylamine the furane cycle persists and exocyclic double bond reacts. Furoisoindole system with carboxyl group in the six-membered ring is formed. It should be noted that earlier furoisoindole system used to be obtained by the Domino Wittig-Diels-Alder reaction (Patre et al., 2007) and palladium-catalyzed tandem cyclization of allenes with heteroarylhalides (Ohno et al., 2005).

Crystal structure of title compound consists of two independent molecules with very similar geometrical parameters (Figure 2). The five-membered C7—C8—C11—N1—C18 rings of both independent A and B molecules adopt envelope conformation puckered on C7 [puckering parameters (Cremer & Pople, 1975): q2 = 0.3449 (8) and 0.3525 (9) Å, ϕ2 = 283.66 (13) and 287.71 (14)° for A and B molecules, respectively]. The six-membered C4—C5—C6—C7—C8—C9 rings of both independent A and B molecules adopt half-chair conformation (Q = 0.5113 (8) and 0.5190 (9) Å, θ = 130.33 (9) and 129.98 (10)°, ϕ = 31.02 (12) and 25.34 (13)° for A and B molecules, respectively). There are three chiral carbon atoms (C7, C8 and C9) in the molecule. Two independent molecules are of the same chirality. Since, the compound crystalizes in centrosymmetric space group, it consists of 1:1 ratio mixture of S,R,R- and R,S,S-isomers.

The structure displays O—H···O hydrogen bonding between acid carboxyl and carbonyl groups, which connects molecules into chains propagating in b-axis direction (Figure 3). The crystal packing exhibits weak intermolecular C—H···π interactions.

Related literature top

For the intramolecular Diels–Alder reaction of vinylfurans, see: Patre et al. (2007). For related solid-phase Diels–Alder reaction with vinyl benzenes, see: Sun et al. (2000). For palladium-catalysed tandem cyclization of allenes with heteroarylhalides, see: Ohno et al. (2005). For heterolignan derivatives, see: Ramos et al. (1999); Leteurtre et al. (1992) and for their pharmaceutical properties, see: Iwasaki et al. (1996); Ducharme et al. (1994). For a related structure, see: Obushak et al. (2011). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

To a solution of 0.003 mol [3-(2-furyl)-2-propenyl]-phenylamine in benzene 0.003 mol of grinded into a powder maleic anhydride was added. The mixture was boiled until the precipitation of sediment (6–7 h) and 3–4 h thereafter. The precipitate was filtered, washed with benzene and alcohol and recrystalized from EtOH/DMF/H2O.

Refinement top

H atoms bonded to O atoms were located in a difference map, but in final refinement cycles O—H distances and C—O—H angles were constrained to 0.84 Å and 109.5°, respectively, with only C—C—O—H torsion angles refined (Uiso(H) = 1.5Ueq(O)). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–1.00 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Schematic represenation of heterolignan: X = O, N, S; Q1-4 = C or heteroatom; Ar - Ar' = benzene or heterocycle.
[Figure 2] Fig. 2. View of two hydrogen-bonded (dashed lines) independent molecules, showing the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. A portion of the crystal packing viewed along the a-axis. Hydrogen atoms not involved in hydrogen bonding were omitted for clarity.
(4R*,4aR*,7aS*)-5-Oxo-6-phenyl-4a,5,6,7,7a,8-hexahydro-4H-furo[2,3-f]isoindole-4-carboxylic acid top
Crystal data top
C17H15NO4F(000) = 2496
Mr = 297.30Dx = 1.407 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 39275 reflections
a = 12.107 (4) Åθ = 2.8–36.8°
b = 16.945 (5) ŵ = 0.10 mm1
c = 27.370 (9) ÅT = 120 K
V = 5615 (3) Å3Block, brown
Z = 160.64 × 0.42 × 0.28 mm
Data collection top
Kuma KM-4-CCD
diffractometer
13130 independent reflections
Radiation source: fine-focus sealed tube9304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scanθmax = 36.9°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 2020
Tmin = 0.972, Tmax = 1.000k = 2728
84648 measured reflectionsl = 4141
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.08P)2]
where P = (Fo2 + 2Fc2)/3
13130 reflections(Δ/σ)max = 0.001
399 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C17H15NO4V = 5615 (3) Å3
Mr = 297.30Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 12.107 (4) ŵ = 0.10 mm1
b = 16.945 (5) ÅT = 120 K
c = 27.370 (9) Å0.64 × 0.42 × 0.28 mm
Data collection top
Kuma KM-4-CCD
diffractometer
13130 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
9304 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 1.000Rint = 0.030
84648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.03Δρmax = 0.54 e Å3
13130 reflectionsΔρmin = 0.21 e Å3
399 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.43614 (5)0.45308 (4)0.74410 (2)0.02474 (13)
C2A0.48122 (7)0.47477 (5)0.70003 (4)0.02650 (18)
H2A0.54170.50990.69630.032*
C3A0.42783 (6)0.43933 (5)0.66270 (3)0.02283 (16)
H3A0.44340.44480.62890.027*
C4A0.34282 (6)0.39162 (4)0.68434 (3)0.01725 (13)
C5A0.35163 (6)0.40237 (4)0.73337 (3)0.01896 (14)
C6A0.28127 (6)0.36960 (5)0.77313 (3)0.02086 (14)
H6A10.26210.41120.79710.025*
H6A20.32020.32650.79040.025*
C7A0.17744 (6)0.33842 (4)0.74799 (3)0.01599 (13)
H7A0.13070.38440.73810.019*
C8A0.20610 (5)0.29054 (4)0.70217 (3)0.01401 (12)
H8A0.26580.25300.71200.017*
C9A0.25425 (5)0.34096 (4)0.66122 (3)0.01490 (12)
H9A0.28860.30590.63610.018*
C10A0.16936 (6)0.39389 (4)0.63691 (3)0.01704 (13)
O2A0.07210 (5)0.39574 (4)0.64693 (2)0.02327 (12)
O3A0.21636 (5)0.43830 (4)0.60227 (2)0.02464 (13)
H3A10.16900.46890.59030.037*
C11A0.10348 (6)0.24089 (4)0.69385 (3)0.01467 (12)
O4A0.07488 (4)0.20698 (3)0.65625 (2)0.01945 (11)
N1A0.05043 (5)0.23543 (4)0.73791 (2)0.01587 (11)
C12A0.03743 (6)0.18323 (4)0.74959 (3)0.01686 (13)
C13A0.12017 (6)0.16453 (5)0.71592 (3)0.01985 (14)
H13A0.11700.18440.68350.024*
C14A0.20769 (7)0.11622 (5)0.73062 (4)0.02544 (17)
H14A0.26440.10370.70790.031*
C15A0.21328 (7)0.08613 (5)0.77770 (4)0.02926 (19)
H15A0.27350.05360.78720.035*
C16A0.13026 (8)0.10393 (5)0.81074 (4)0.02896 (19)
H16A0.13310.08300.84290.035*
C17A0.04275 (7)0.15232 (5)0.79697 (3)0.02339 (16)
H17A0.01370.16440.81990.028*
C18A0.10617 (6)0.28081 (4)0.77672 (3)0.01724 (13)
H18A0.15200.24610.79760.021*
H18B0.05200.30900.79740.021*
O1B0.18541 (6)0.22957 (5)0.39331 (2)0.03053 (14)
C2B0.07999 (8)0.21098 (7)0.40790 (4)0.0343 (2)
H2B0.01490.22670.39120.041*
C3B0.08127 (8)0.16764 (6)0.44902 (4)0.03071 (19)
H3B0.01900.14720.46590.037*
C4B0.19523 (7)0.15827 (5)0.46234 (3)0.02264 (15)
C5B0.25439 (7)0.19673 (5)0.42746 (3)0.02408 (16)
C6B0.37635 (7)0.20572 (5)0.42263 (3)0.02560 (17)
H6B10.39580.26050.41350.031*
H6B20.40580.16930.39750.031*
C7B0.42244 (7)0.18526 (4)0.47312 (3)0.01961 (14)
H7B0.40320.22880.49630.024*
C8B0.37084 (7)0.10836 (4)0.49177 (3)0.01969 (14)
H8B0.37630.06940.46440.024*
C9B0.24858 (7)0.11491 (5)0.50458 (3)0.02059 (14)
H9B0.21630.06070.50690.025*
C10B0.22962 (7)0.15828 (5)0.55291 (3)0.02022 (14)
O2B0.29800 (6)0.19859 (5)0.57299 (3)0.03523 (17)
O3B0.12847 (5)0.14681 (4)0.57001 (2)0.02688 (14)
H3B10.12080.17140.59650.040*
C11B0.45022 (7)0.08127 (5)0.53048 (3)0.02118 (15)
O4B0.43207 (6)0.03220 (4)0.56273 (3)0.03127 (15)
N1B0.54962 (6)0.11605 (4)0.52171 (3)0.02045 (13)
C12B0.65092 (7)0.09661 (5)0.54476 (3)0.02148 (15)
C13B0.65372 (9)0.05946 (5)0.59053 (3)0.02803 (18)
H13B0.58710.04830.60750.034*
C14B0.75534 (10)0.03908 (6)0.61076 (4)0.0346 (2)
H14B0.75710.01220.64120.042*
C15B0.85333 (10)0.05686 (6)0.58777 (4)0.0375 (2)
H15B0.92200.04360.60240.045*
C16B0.84995 (9)0.09450 (7)0.54291 (4)0.0361 (2)
H16B0.91710.10730.52680.043*
C17B0.74999 (8)0.11391 (6)0.52103 (4)0.02780 (17)
H17B0.74910.13890.49000.033*
C18B0.54527 (7)0.16734 (5)0.47787 (3)0.02155 (15)
H18C0.57340.13940.44860.026*
H18D0.58860.21630.48280.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0215 (3)0.0201 (3)0.0327 (3)0.0047 (2)0.0089 (2)0.0004 (2)
C2A0.0198 (3)0.0208 (3)0.0388 (5)0.0051 (3)0.0022 (3)0.0034 (3)
C3A0.0179 (3)0.0196 (3)0.0310 (5)0.0025 (3)0.0013 (3)0.0036 (3)
C4A0.0141 (3)0.0143 (3)0.0233 (4)0.0001 (2)0.0011 (2)0.0008 (2)
C5A0.0168 (3)0.0150 (3)0.0251 (4)0.0011 (2)0.0048 (3)0.0006 (3)
C6A0.0230 (3)0.0210 (3)0.0186 (4)0.0020 (3)0.0042 (3)0.0027 (3)
C7A0.0180 (3)0.0158 (3)0.0141 (3)0.0005 (2)0.0005 (2)0.0014 (2)
C8A0.0136 (2)0.0134 (3)0.0150 (3)0.0009 (2)0.0001 (2)0.0003 (2)
C9A0.0146 (3)0.0141 (3)0.0159 (3)0.0001 (2)0.0007 (2)0.0002 (2)
C10A0.0200 (3)0.0163 (3)0.0148 (3)0.0008 (2)0.0023 (2)0.0006 (2)
O2A0.0187 (2)0.0281 (3)0.0231 (3)0.0036 (2)0.0021 (2)0.0048 (2)
O3A0.0250 (3)0.0254 (3)0.0235 (3)0.0033 (2)0.0026 (2)0.0101 (2)
C11A0.0149 (3)0.0147 (3)0.0144 (3)0.0013 (2)0.0010 (2)0.0001 (2)
O4A0.0196 (2)0.0230 (3)0.0158 (3)0.00351 (19)0.00158 (19)0.0040 (2)
N1A0.0157 (2)0.0178 (3)0.0141 (3)0.0016 (2)0.0019 (2)0.0007 (2)
C12A0.0160 (3)0.0150 (3)0.0196 (4)0.0008 (2)0.0043 (2)0.0003 (2)
C13A0.0174 (3)0.0181 (3)0.0241 (4)0.0002 (2)0.0025 (3)0.0040 (3)
C14A0.0198 (3)0.0186 (3)0.0379 (5)0.0023 (3)0.0053 (3)0.0081 (3)
C15A0.0273 (4)0.0171 (3)0.0434 (6)0.0043 (3)0.0129 (4)0.0021 (3)
C16A0.0340 (4)0.0214 (4)0.0315 (5)0.0022 (3)0.0113 (4)0.0057 (3)
C17A0.0247 (3)0.0223 (3)0.0231 (4)0.0007 (3)0.0042 (3)0.0049 (3)
C18A0.0194 (3)0.0192 (3)0.0131 (3)0.0003 (2)0.0006 (2)0.0015 (2)
O1B0.0337 (3)0.0394 (4)0.0184 (3)0.0012 (3)0.0039 (2)0.0016 (3)
C2B0.0307 (4)0.0488 (6)0.0234 (5)0.0004 (4)0.0054 (3)0.0050 (4)
C3B0.0286 (4)0.0421 (5)0.0214 (4)0.0035 (4)0.0015 (3)0.0063 (4)
C4B0.0276 (4)0.0249 (4)0.0154 (4)0.0011 (3)0.0012 (3)0.0051 (3)
C5B0.0304 (4)0.0263 (4)0.0155 (4)0.0019 (3)0.0002 (3)0.0016 (3)
C6B0.0307 (4)0.0283 (4)0.0178 (4)0.0013 (3)0.0048 (3)0.0043 (3)
C7B0.0261 (3)0.0170 (3)0.0158 (4)0.0007 (3)0.0049 (3)0.0016 (3)
C8B0.0274 (3)0.0150 (3)0.0167 (4)0.0004 (3)0.0052 (3)0.0014 (2)
C9B0.0261 (3)0.0189 (3)0.0168 (4)0.0027 (3)0.0039 (3)0.0027 (3)
C10B0.0239 (3)0.0211 (3)0.0157 (4)0.0003 (3)0.0039 (3)0.0000 (3)
O2B0.0313 (3)0.0474 (4)0.0270 (4)0.0132 (3)0.0095 (3)0.0181 (3)
O3B0.0231 (3)0.0381 (4)0.0194 (3)0.0034 (2)0.0054 (2)0.0073 (3)
C11B0.0292 (4)0.0155 (3)0.0188 (4)0.0000 (3)0.0057 (3)0.0010 (3)
O4B0.0378 (4)0.0270 (3)0.0291 (4)0.0052 (3)0.0039 (3)0.0128 (3)
N1B0.0272 (3)0.0176 (3)0.0166 (3)0.0006 (2)0.0043 (2)0.0030 (2)
C12B0.0303 (4)0.0166 (3)0.0176 (4)0.0010 (3)0.0001 (3)0.0007 (3)
C13B0.0419 (5)0.0233 (4)0.0189 (4)0.0009 (3)0.0013 (3)0.0017 (3)
C14B0.0524 (6)0.0271 (4)0.0244 (5)0.0005 (4)0.0105 (4)0.0045 (3)
C15B0.0417 (5)0.0322 (5)0.0387 (6)0.0052 (4)0.0128 (4)0.0026 (4)
C16B0.0300 (4)0.0414 (5)0.0367 (6)0.0021 (4)0.0035 (4)0.0048 (4)
C17B0.0291 (4)0.0304 (4)0.0239 (4)0.0010 (3)0.0002 (3)0.0044 (3)
C18B0.0270 (3)0.0209 (3)0.0168 (4)0.0016 (3)0.0061 (3)0.0047 (3)
Geometric parameters (Å, º) top
O1A—C5A1.3681 (9)O1B—C5B1.3715 (11)
O1A—C2A1.3740 (12)O1B—C2B1.3739 (13)
C2A—C3A1.3500 (13)C2B—C3B1.3440 (16)
C2A—H2A0.9500C2B—H2B0.9500
C3A—C4A1.4364 (11)C3B—C4B1.4359 (13)
C3A—H3A0.9500C3B—H3B0.9500
C4A—C5A1.3585 (13)C4B—C5B1.3598 (13)
C4A—C9A1.5124 (10)C4B—C9B1.5144 (13)
C5A—C6A1.4893 (12)C5B—C6B1.4902 (14)
C6A—C7A1.5273 (11)C6B—C7B1.5301 (13)
C6A—H6A10.9900C6B—H6B10.9900
C6A—H6A20.9900C6B—H6B20.9900
C7A—C18A1.5218 (11)C7B—C18B1.5234 (12)
C7A—C8A1.5335 (11)C7B—C8B1.5326 (11)
C7A—H7A1.0000C7B—H7B1.0000
C8A—C11A1.5175 (10)C8B—C11B1.5024 (13)
C8A—C9A1.5251 (10)C8B—C9B1.5251 (12)
C8A—H8A1.0000C8B—H8B1.0000
C9A—C10A1.5178 (10)C9B—C10B1.5307 (12)
C9A—H9A1.0000C9B—H9B1.0000
C10A—O2A1.2094 (10)C10B—O2B1.2057 (11)
C10A—O3A1.3375 (10)C10B—O3B1.3254 (10)
O3A—H3A10.8400O3B—H3B10.8400
C11A—O4A1.2286 (9)C11B—O4B1.2324 (10)
C11A—N1A1.3696 (10)C11B—N1B1.3613 (11)
N1A—C12A1.4199 (10)N1B—C12B1.4181 (12)
N1A—C18A1.4747 (10)N1B—C18B1.4825 (11)
C12A—C13A1.3976 (12)C12B—C17B1.3953 (13)
C12A—C17A1.4000 (12)C12B—C13B1.4024 (13)
C13A—C14A1.3981 (11)C13B—C14B1.3926 (15)
C13A—H13A0.9500C13B—H13B0.9500
C14A—C15A1.3875 (15)C14B—C15B1.3763 (17)
C14A—H14A0.9500C14B—H14B0.9500
C15A—C16A1.3852 (15)C15B—C16B1.3843 (16)
C15A—H15A0.9500C15B—H15B0.9500
C16A—C17A1.3916 (12)C16B—C17B1.3898 (14)
C16A—H16A0.9500C16B—H16B0.9500
C17A—H17A0.9500C17B—H17B0.9500
C18A—H18A0.9900C18B—H18C0.9900
C18A—H18B0.9900C18B—H18D0.9900
C5A—O1A—C2A106.06 (7)C5B—O1B—C2B105.94 (8)
C3A—C2A—O1A110.80 (7)C3B—C2B—O1B110.97 (9)
C3A—C2A—H2A124.6C3B—C2B—H2B124.5
O1A—C2A—H2A124.6O1B—C2B—H2B124.5
C2A—C3A—C4A106.34 (8)C2B—C3B—C4B106.51 (9)
C2A—C3A—H3A126.8C2B—C3B—H3B126.7
C4A—C3A—H3A126.8C4B—C3B—H3B126.7
C5A—C4A—C3A106.00 (7)C5B—C4B—C3B105.95 (8)
C5A—C4A—C9A123.02 (7)C5B—C4B—C9B122.94 (8)
C3A—C4A—C9A130.92 (8)C3B—C4B—C9B131.10 (8)
C4A—C5A—O1A110.79 (7)C4B—C5B—O1B110.62 (8)
C4A—C5A—C6A128.83 (7)C4B—C5B—C6B129.29 (8)
O1A—C5A—C6A120.34 (7)O1B—C5B—C6B120.09 (8)
C5A—C6A—C7A105.69 (7)C5B—C6B—C7B104.95 (7)
C5A—C6A—H6A1110.6C5B—C6B—H6B1110.8
C7A—C6A—H6A1110.6C7B—C6B—H6B1110.8
C5A—C6A—H6A2110.6C5B—C6B—H6B2110.8
C7A—C6A—H6A2110.6C7B—C6B—H6B2110.8
H6A1—C6A—H6A2108.7H6B1—C6B—H6B2108.8
C18A—C7A—C6A117.12 (7)C18B—C7B—C6B118.57 (7)
C18A—C7A—C8A102.21 (6)C18B—C7B—C8B101.53 (6)
C6A—C7A—C8A111.43 (6)C6B—C7B—C8B110.17 (7)
C18A—C7A—H7A108.6C18B—C7B—H7B108.7
C6A—C7A—H7A108.6C6B—C7B—H7B108.7
C8A—C7A—H7A108.6C8B—C7B—H7B108.7
C11A—C8A—C9A120.88 (6)C11B—C8B—C9B118.75 (7)
C11A—C8A—C7A103.34 (6)C11B—C8B—C7B103.53 (7)
C9A—C8A—C7A113.02 (6)C9B—C8B—C7B114.22 (7)
C11A—C8A—H8A106.2C11B—C8B—H8B106.5
C9A—C8A—H8A106.2C9B—C8B—H8B106.5
C7A—C8A—H8A106.2C7B—C8B—H8B106.5
C4A—C9A—C10A109.15 (6)C4B—C9B—C8B105.89 (7)
C4A—C9A—C8A106.36 (6)C4B—C9B—C10B111.28 (7)
C10A—C9A—C8A113.23 (6)C8B—C9B—C10B112.28 (7)
C4A—C9A—H9A109.3C4B—C9B—H9B109.1
C10A—C9A—H9A109.3C8B—C9B—H9B109.1
C8A—C9A—H9A109.3C10B—C9B—H9B109.1
O2A—C10A—O3A124.08 (7)O2B—C10B—O3B123.81 (8)
O2A—C10A—C9A125.12 (7)O2B—C10B—C9B124.26 (7)
O3A—C10A—C9A110.80 (7)O3B—C10B—C9B111.93 (7)
C10A—O3A—H3A1109.5C10B—O3B—H3B1109.5
O4A—C11A—N1A125.02 (7)O4B—C11B—N1B125.18 (8)
O4A—C11A—C8A128.01 (6)O4B—C11B—C8B126.67 (8)
N1A—C11A—C8A106.82 (6)N1B—C11B—C8B107.98 (7)
C11A—N1A—C12A126.28 (6)C11B—N1B—C12B125.83 (7)
C11A—N1A—C18A112.60 (6)C11B—N1B—C18B111.42 (7)
C12A—N1A—C18A120.36 (6)C12B—N1B—C18B121.81 (7)
C13A—C12A—C17A119.54 (7)C17B—C12B—C13B119.31 (8)
C13A—C12A—N1A121.99 (7)C17B—C12B—N1B119.17 (8)
C17A—C12A—N1A118.43 (7)C13B—C12B—N1B121.51 (8)
C12A—C13A—C14A119.09 (8)C14B—C13B—C12B119.20 (9)
C12A—C13A—H13A120.5C14B—C13B—H13B120.4
C14A—C13A—H13A120.5C12B—C13B—H13B120.4
C15A—C14A—C13A121.29 (8)C15B—C14B—C13B121.70 (9)
C15A—C14A—H14A119.4C15B—C14B—H14B119.2
C13A—C14A—H14A119.4C13B—C14B—H14B119.2
C16A—C15A—C14A119.40 (8)C14B—C15B—C16B118.75 (10)
C16A—C15A—H15A120.3C14B—C15B—H15B120.6
C14A—C15A—H15A120.3C16B—C15B—H15B120.6
C15A—C16A—C17A120.26 (9)C15B—C16B—C17B121.13 (10)
C15A—C16A—H16A119.9C15B—C16B—H16B119.4
C17A—C16A—H16A119.9C17B—C16B—H16B119.4
C16A—C17A—C12A120.41 (9)C16B—C17B—C12B119.88 (9)
C16A—C17A—H17A119.8C16B—C17B—H17B120.1
C12A—C17A—H17A119.8C12B—C17B—H17B120.1
N1A—C18A—C7A102.82 (6)N1B—C18B—C7B102.75 (6)
N1A—C18A—H18A111.2N1B—C18B—H18C111.2
C7A—C18A—H18A111.2C7B—C18B—H18C111.2
N1A—C18A—H18B111.2N1B—C18B—H18D111.2
C7A—C18A—H18B111.2C7B—C18B—H18D111.2
H18A—C18A—H18B109.1H18C—C18B—H18D109.1
C5A—O1A—C2A—C3A0.07 (9)C5B—O1B—C2B—C3B0.68 (11)
O1A—C2A—C3A—C4A0.06 (9)O1B—C2B—C3B—C4B0.72 (12)
C2A—C3A—C4A—C5A0.16 (9)C2B—C3B—C4B—C5B0.48 (11)
C2A—C3A—C4A—C9A177.41 (7)C2B—C3B—C4B—C9B179.30 (9)
C3A—C4A—C5A—O1A0.22 (8)C3B—C4B—C5B—O1B0.07 (10)
C9A—C4A—C5A—O1A177.73 (6)C9B—C4B—C5B—O1B179.02 (7)
C3A—C4A—C5A—C6A177.26 (7)C3B—C4B—C5B—C6B179.45 (9)
C9A—C4A—C5A—C6A0.25 (12)C9B—C4B—C5B—C6B0.51 (14)
C2A—O1A—C5A—C4A0.18 (9)C2B—O1B—C5B—C4B0.35 (10)
C2A—O1A—C5A—C6A177.54 (7)C2B—O1B—C5B—C6B179.93 (8)
C4A—C5A—C6A—C7A14.66 (11)C4B—C5B—C6B—C7B17.32 (12)
O1A—C5A—C6A—C7A162.62 (6)O1B—C5B—C6B—C7B163.19 (7)
C5A—C6A—C7A—C18A162.60 (6)C5B—C6B—C7B—C18B164.07 (7)
C5A—C6A—C7A—C8A45.46 (8)C5B—C6B—C7B—C8B47.79 (9)
C18A—C7A—C8A—C11A33.72 (7)C18B—C7B—C8B—C11B33.71 (8)
C6A—C7A—C8A—C11A159.58 (6)C6B—C7B—C8B—C11B160.23 (6)
C18A—C7A—C8A—C9A166.08 (6)C18B—C7B—C8B—C9B164.30 (7)
C6A—C7A—C8A—C9A68.05 (8)C6B—C7B—C8B—C9B69.18 (9)
C5A—C4A—C9A—C10A106.75 (8)C5B—C4B—C9B—C8B12.99 (10)
C3A—C4A—C9A—C10A70.09 (10)C3B—C4B—C9B—C8B165.66 (9)
C5A—C4A—C9A—C8A15.74 (9)C5B—C4B—C9B—C10B109.28 (9)
C3A—C4A—C9A—C8A167.42 (7)C3B—C4B—C9B—C10B72.07 (11)
C11A—C8A—C9A—C4A170.99 (6)C11B—C8B—C9B—C4B169.01 (7)
C7A—C8A—C9A—C4A47.89 (7)C7B—C8B—C9B—C4B46.37 (9)
C11A—C8A—C9A—C10A51.12 (9)C11B—C8B—C9B—C10B47.39 (9)
C7A—C8A—C9A—C10A71.98 (8)C7B—C8B—C9B—C10B75.25 (9)
C4A—C9A—C10A—O2A120.49 (8)C4B—C9B—C10B—O2B102.12 (10)
C8A—C9A—C10A—O2A2.23 (11)C8B—C9B—C10B—O2B16.37 (12)
C4A—C9A—C10A—O3A60.04 (8)C4B—C9B—C10B—O3B77.38 (9)
C8A—C9A—C10A—O3A178.30 (6)C8B—C9B—C10B—O3B164.12 (7)
C9A—C8A—C11A—O4A33.83 (11)C9B—C8B—C11B—O4B35.02 (12)
C7A—C8A—C11A—O4A161.42 (7)C7B—C8B—C11B—O4B162.85 (8)
C9A—C8A—C11A—N1A150.61 (6)C9B—C8B—C11B—N1B149.49 (7)
C7A—C8A—C11A—N1A23.01 (7)C7B—C8B—C11B—N1B21.66 (8)
O4A—C11A—N1A—C12A8.13 (12)O4B—C11B—N1B—C12B6.42 (14)
C8A—C11A—N1A—C12A167.60 (6)C8B—C11B—N1B—C12B169.16 (7)
O4A—C11A—N1A—C18A178.15 (7)O4B—C11B—N1B—C18B175.43 (8)
C8A—C11A—N1A—C18A2.42 (8)C8B—C11B—N1B—C18B0.14 (9)
C11A—N1A—C12A—C13A37.46 (11)C11B—N1B—C12B—C17B156.19 (8)
C18A—N1A—C12A—C13A153.23 (7)C18B—N1B—C12B—C17B11.76 (12)
C11A—N1A—C12A—C17A145.01 (8)C11B—N1B—C12B—C13B22.92 (12)
C18A—N1A—C12A—C17A24.30 (10)C18B—N1B—C12B—C13B169.13 (8)
C17A—C12A—C13A—C14A1.04 (11)C17B—C12B—C13B—C14B1.42 (13)
N1A—C12A—C13A—C14A176.46 (7)N1B—C12B—C13B—C14B177.70 (8)
C12A—C13A—C14A—C15A0.55 (12)C12B—C13B—C14B—C15B2.25 (15)
C13A—C14A—C15A—C16A0.35 (13)C13B—C14B—C15B—C16B1.38 (16)
C14A—C15A—C16A—C17A0.76 (13)C14B—C15B—C16B—C17B0.32 (17)
C15A—C16A—C17A—C12A0.26 (13)C15B—C16B—C17B—C12B1.10 (16)
C13A—C12A—C17A—C16A0.65 (12)C13B—C12B—C17B—C16B0.21 (14)
N1A—C12A—C17A—C16A176.94 (7)N1B—C12B—C17B—C16B179.34 (9)
C11A—N1A—C18A—C7A19.30 (8)C11B—N1B—C18B—C7B21.95 (9)
C12A—N1A—C18A—C7A170.02 (6)C12B—N1B—C18B—C7B168.52 (7)
C6A—C7A—C18A—N1A154.05 (6)C6B—C7B—C18B—N1B154.21 (7)
C8A—C7A—C18A—N1A32.00 (7)C8B—C7B—C18B—N1B33.41 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C13A–C18A and O1A–C5A rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3B—H3B1···O4A0.841.832.6517 (11)165
O3A—H3A1···O4Bi0.841.792.6329 (10)178
C8A—H8A···Cg1ii1.002.503.4710 (14)165
C15A—H15A···Cg2iii0.952.633.5470 (15)162
C18A—H18B···Cg2iv0.992.723.5492 (14)141
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y, z+3/2; (iii) x, y1/2, z+3/2; (iv) x1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H15NO4
Mr297.30
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)12.107 (4), 16.945 (5), 27.370 (9)
V3)5615 (3)
Z16
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.64 × 0.42 × 0.28
Data collection
DiffractometerKuma KM-4-CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.972, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
84648, 13130, 9304
Rint0.030
(sin θ/λ)max1)0.845
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.127, 1.03
No. of reflections13130
No. of parameters399
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C13A–C18A and O1A–C5A rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3B—H3B1···O4A0.841.832.6517 (11)165
O3A—H3A1···O4Bi0.841.792.6329 (10)178
C8A—H8A···Cg1ii1.002.503.4710 (14)165
C15A—H15A···Cg2iii0.952.633.5470 (15)162
C18A—H18B···Cg2iv0.992.723.5492 (14)141
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y, z+3/2; (iii) x, y1/2, z+3/2; (iv) x1/2, y, z+3/2.
 

Acknowledgements

The authors are grateful to the Ukrainian State Fund for Fundamental Research (grant No. F40.3/045) and the Russian Foundation for Basic Research (grant No. 11–03-90416) for the financial support of this work.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDucharme, Y., Brideau, C., Dube, D., Chan, C. C., Falgueyret, J. P., Gillard, J. W., Guay, J., Hutchison, J. H., McFarlane, C. S., Riendeau, D., Scheigetz, J. & Girard, Y. (1994). J. Med. Chem. 37, 512–518.  CrossRef CAS PubMed Web of Science Google Scholar
First citationIwasaki, T., Kondo, K., Kuroda, T., Moritani, Y., Yamagata, S., Sugiura, M., Kikkawa, H., Kaminuma, O. & Ikezawa, K. (1996). J. Med. Chem. 39, 2696–2704.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLeteurtre, F., Madalengoitia, J., Orr, A., Guzi, T., Lehnert, E., MacDonald, T. & Pommier, Y. (1992). Cancer Res. 52, 4478–4483.  PubMed CAS Web of Science Google Scholar
First citationObushak, M. D., Horak, Y. I., Zaytsev, V. P., Motorygina, E. L., Zubkov, F. I. & Khrustalev, V. N. (2011). Acta Cryst. E67, o3031–o3032.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOhno, H., Miyamura, K., Mizutani, T., Kadoh, Y., Takeoka, Y., Hamaguchi, H. & Tanaka, T. (2005). Chem. Eur. J. 11, 3728–3741.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wroclaw, Poland.  Google Scholar
First citationPatre, E. R., Gawas, S., Sen, S., Parameswaran, P. S. & Tilve, S. G. (2007). Tetrahedron Lett. 48, 3517–3520.  Web of Science CrossRef CAS Google Scholar
First citationRamos, A. C., Pelaez-Lamamie de Clairac, R. & Medarde, M. (1999). Heterocycles, 51, 1443–1470.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, S., Turchi, I. J., Xu, D. & Murray, W. V. (2000). J. Org. Chem. 65, 2555–2559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o273-o274
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds