organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-bromo-3-(4-chloro­benzene­sulfonamido)­benzoate

aCollege of Pharmacy, Howard University, 2300 4th Street, NW, Washington, DC 20059, USA, and bDepartment of Chemistry, Howard University, 525 College Street, NW, Washington, DC 20059, USA
*Correspondence e-mail: amol.kulkarni@howard.edu

(Received 5 October 2012; accepted 26 November 2012; online 31 January 2013)

In the crystal structure of the title compound, C14H11BrClNO4S, the mol­ecules form inversion dimers with R22(8) motifs through pairs of N—H⋯O hydrogen bonds. The benzene rings are not coplanar and subtend a dihedral angle of 66.27 (8)°. The carbomethoxy group makes a dihedral angle of 75.1 (1)° with the ring to which it is attached.

Related literature

Depending on their substitution patterns, sulfonamides display a wide array of biological activity. For their use as anti­mitotic, anti­bacterial and anti-obesity agents, see: Hu et al. (2008[Hu, L., Li, Z.-R., Jiang, J.-D. & Boykin, D. W. (2008). Anticancer Agents Med. Chem. 8, 739-745.]); Wydysh et al. (2009[Wydysh, E. A., Medghalchi, S. M., Vadlamudi, A. & Townsend, C. A. (2009). J. Med. Chem. 52, 3317-3327.]). For structures related to the development of novel anti­microbial agents, see: Kulkarni et al. (2012a[Kulkarni, A. A., King, C., Butcher, R. J. & Fortunak, J. M. D. (2012a). Acta Cryst. E68, o1498.],b[Kulkarni, A. A., King, C. L., Fortunak, J. M. D. & Butcher, R. J. (2012b). Acta Cryst. E68, o1497.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11BrClNO4S

  • Mr = 404.66

  • Monoclinic, P 21 /c

  • a = 7.9206 (2) Å

  • b = 9.4600 (3) Å

  • c = 20.0915 (6) Å

  • β = 94.505 (3)°

  • V = 1500.79 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 6.84 mm−1

  • T = 123 K

  • 1.06 × 0.88 × 0.52 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.049, Tmax = 0.198

  • 5248 measured reflections

  • 3012 independent reflections

  • 2873 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.08

  • 3012 reflections

  • 205 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.80 (4) 2.22 (4) 2.978 (3) 158 (3)
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Depending on their substitution patterns, sulfonamides display a wide array of biological activity. These compounds have been used as antimitotic, antibacterial, anti-obesity agents. See: Hu et al. (2008); Wydysh et al. (2009). The crystal structure of the title compound has not previously been reported. The title compound was synthesized as an intermediate during our synthetic studies directed towards the development of novel antimicrobial agents (Kulkarni et al., 2012a, 2012b).

In the title compound (C14H11Br1Cl1N1O4S1), the molecules form dimers through N—H···O hydrogen bonding to form R22(8) motifs. The two phenyl rings are not coplanar and have a dihedral angle of 66.27 (8)°. The carbomethoxy group makes a dihedral angle of 75.1 (1)° with the ring to which it is attached.

Related literature top

Depending on their substitution patterns, sulfonamides display a wide array of biological activity. For their use as antimitotic, antibacterial and anti-obesity agents, see: Hu et al. (2008); Wydysh et al. (2009). For structures related to the development of novel antimicrobial agents, see: Kulkarni et al. (2012a,b).

Experimental top

A 25 ml one-neck flask equipped with a magnetic stir bar was charged with a solution of the methyl ester (230 mg, 1.0 mmole) in CH2Cl2 (4.0 ml). Pyridine (604 ml, 7.5 mmole) was added. The reaction mixture was cooled at 0 °C using ice-bath for 15 minutes. 4-chlorophenylsulfonyl chloride (253 mg, 1.2 mmole) was added to the reaction mixture. The reaction mixture was slowly warmed to RT and was stirred at RT for 4 h. The crude reaction mixture was poured into a separatory funnel containing 1 N HCl (20 ml) and CH2Cl2 (20 ml). The layers were separated, the organic layer was washed with water (2X 20 ml) and brine (1X 20 ml). It was dried over anhydr. Na2SO4. The solvent was evaporated in vacuo. The orange/brown oil thus obtained was purified using silica gel flash column chromatography. Elution with 40% EA in hexanes afforded the desired sulfonamide product as pale yellow crystals. mp 121–124 °C; 1H-NMR (CDCl3) d 7.80 (dd, J = 8.0, 2.0 Hz, 1H), 7. 68 (dt, J = 8.0, 2.0 Hz, 1H), 7.51 (dd, J = 8.0, 2.0 Hz, 1H), 7.41–7.31 (m, 4H), 3.86 (s, 3H). 13C-NMR (CDCl3) d 165.9, 139.9, 137.1, 135.5, 133.4, 129.4, 128.6, 128.0, 127.7, 125.4, 115.1, 52.6.

Refinement top

The amine H atom was seen in a difference Fourier map and refined isotropically with Uiso(H) = 1.2Ueq(N). The C-bound H-atoms were positioned geometrically with C—H = 0.95 and 0.98 Å, for aromatic and CH3 H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) [Uiso(H) = 1.5Ueq(C) for CH3].

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-hydrogen atoms.
[Figure 2] Fig. 2. The packing view showing the hydrogen bonds network. Dashed lines indicate intermolecular N—H···O hydrogen bonds (see Table 1 for details).
Methyl 2-bromo-3-(4-chlorobenzenesulfonamido)benzoate top
Crystal data top
C14H11BrClNO4SF(000) = 808
Mr = 404.66Dx = 1.791 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 3046 reflections
a = 7.9206 (2) Åθ = 4.4–75.7°
b = 9.4600 (3) ŵ = 6.84 mm1
c = 20.0915 (6) ÅT = 123 K
β = 94.505 (3)°Chunk, colorless
V = 1500.79 (8) Å31.06 × 0.88 × 0.52 mm
Z = 4
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
3012 independent reflections
Radiation source: Enhance (Cu) X-ray Source2873 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.5081 pixels mm-1θmax = 75.9°, θmin = 4.4°
ω scansh = 99
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2010), based on expressions derived by Clark & Reid (1995)]
k = 117
Tmin = 0.049, Tmax = 0.198l = 2425
5248 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.5274P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3012 reflectionsΔρmax = 0.48 e Å3
205 parametersΔρmin = 0.65 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0021 (3)
Crystal data top
C14H11BrClNO4SV = 1500.79 (8) Å3
Mr = 404.66Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.9206 (2) ŵ = 6.84 mm1
b = 9.4600 (3) ÅT = 123 K
c = 20.0915 (6) Å1.06 × 0.88 × 0.52 mm
β = 94.505 (3)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
3012 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2010), based on expressions derived by Clark & Reid (1995)]
2873 reflections with I > 2σ(I)
Tmin = 0.049, Tmax = 0.198Rint = 0.033
5248 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.48 e Å3
3012 reflectionsΔρmin = 0.65 e Å3
205 parameters
Special details top

Experimental. CrysAlisPro (Agilent, 2010) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.55830 (3)0.29987 (2)0.362077 (11)0.02554 (13)
Cl10.01337 (10)0.03081 (9)0.18862 (3)0.0433 (2)
S10.23124 (6)0.09272 (5)0.48834 (2)0.01812 (15)
O10.3147 (2)0.03081 (17)0.51690 (8)0.0235 (3)
O20.0901 (2)0.15202 (17)0.51868 (8)0.0230 (3)
O30.4253 (3)0.6005 (2)0.27820 (9)0.0397 (5)
O40.5888 (3)0.7061 (2)0.35913 (9)0.0352 (5)
N10.3799 (3)0.2130 (2)0.48786 (10)0.0193 (4)
H1A0.466 (5)0.177 (3)0.4775 (17)0.027 (8)*
C10.3423 (3)0.3532 (2)0.46643 (10)0.0185 (4)
C20.4146 (3)0.4121 (2)0.41128 (10)0.0186 (4)
C30.3853 (3)0.5527 (2)0.39355 (11)0.0206 (4)
C40.2772 (3)0.6340 (2)0.42946 (12)0.0240 (4)
H4A0.25490.72940.41700.029*
C50.2022 (3)0.5763 (2)0.48325 (12)0.0229 (4)
H5A0.12690.63150.50700.027*
C60.2372 (3)0.4374 (3)0.50239 (11)0.0208 (4)
H6A0.18900.39950.54040.025*
C70.4666 (3)0.6198 (2)0.33630 (11)0.0219 (4)
C80.6814 (4)0.7813 (3)0.31100 (14)0.0354 (6)
H8A0.78910.81500.33260.053*
H8B0.61430.86210.29360.053*
H8C0.70350.71770.27420.053*
C90.1676 (3)0.0580 (2)0.40362 (11)0.0203 (4)
C100.2808 (3)0.0105 (2)0.36475 (12)0.0233 (4)
H10A0.38990.03730.38350.028*
C110.2321 (3)0.0390 (3)0.29849 (12)0.0277 (5)
H11A0.30650.08710.27140.033*
C120.0727 (3)0.0038 (3)0.27216 (12)0.0278 (5)
C130.0388 (3)0.0736 (3)0.31041 (13)0.0279 (5)
H13A0.14670.10280.29130.034*
C140.0093 (3)0.1003 (2)0.37711 (12)0.0243 (5)
H14A0.06590.14730.40430.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03114 (18)0.02542 (18)0.02113 (17)0.00412 (8)0.00890 (10)0.00167 (8)
Cl10.0431 (4)0.0583 (4)0.0263 (3)0.0072 (3)0.0109 (3)0.0104 (3)
S10.0171 (3)0.0196 (3)0.0177 (3)0.00109 (18)0.00194 (18)0.00302 (17)
O10.0231 (8)0.0229 (8)0.0248 (8)0.0032 (6)0.0033 (6)0.0067 (6)
O20.0198 (7)0.0256 (8)0.0242 (8)0.0008 (6)0.0048 (6)0.0020 (6)
O30.0456 (11)0.0525 (12)0.0200 (8)0.0195 (10)0.0034 (8)0.0039 (8)
O40.0380 (10)0.0442 (12)0.0223 (9)0.0218 (9)0.0036 (7)0.0062 (7)
N10.0168 (9)0.0212 (9)0.0197 (9)0.0014 (7)0.0005 (7)0.0013 (7)
C10.0165 (9)0.0217 (10)0.0165 (9)0.0002 (8)0.0034 (7)0.0007 (8)
C20.0168 (9)0.0219 (10)0.0167 (9)0.0008 (8)0.0012 (7)0.0017 (8)
C30.0189 (10)0.0230 (10)0.0191 (10)0.0012 (8)0.0034 (8)0.0013 (8)
C40.0238 (11)0.0201 (10)0.0271 (11)0.0016 (8)0.0042 (9)0.0010 (8)
C50.0192 (10)0.0237 (11)0.0257 (11)0.0024 (8)0.0008 (8)0.0030 (8)
C60.0175 (10)0.0248 (10)0.0199 (10)0.0000 (8)0.0003 (8)0.0000 (8)
C70.0226 (10)0.0212 (10)0.0215 (10)0.0010 (8)0.0015 (8)0.0020 (8)
C80.0363 (14)0.0401 (14)0.0296 (13)0.0140 (11)0.0019 (11)0.0088 (11)
C90.0208 (10)0.0186 (10)0.0215 (10)0.0017 (8)0.0005 (8)0.0024 (8)
C100.0207 (10)0.0244 (10)0.0243 (11)0.0018 (8)0.0008 (8)0.0013 (8)
C110.0286 (12)0.0285 (11)0.0258 (12)0.0039 (10)0.0019 (9)0.0033 (9)
C120.0281 (12)0.0307 (12)0.0238 (11)0.0029 (9)0.0042 (9)0.0002 (9)
C130.0214 (11)0.0315 (12)0.0297 (12)0.0002 (9)0.0054 (9)0.0010 (9)
C140.0206 (10)0.0244 (11)0.0276 (11)0.0017 (8)0.0001 (9)0.0014 (9)
Geometric parameters (Å, º) top
Br1—C21.892 (2)C4—H4A0.9500
Cl1—C121.738 (3)C5—C61.391 (3)
S1—O21.4294 (16)C5—H5A0.9500
S1—O11.4397 (16)C6—H6A0.9500
S1—N11.638 (2)C8—H8A0.9800
S1—C91.767 (2)C8—H8B0.9800
O3—C71.201 (3)C8—H8C0.9800
O3—Br1i3.4022 (19)C9—C141.383 (3)
O4—C71.320 (3)C9—C101.394 (3)
O4—C81.446 (3)C10—C111.383 (3)
N1—C11.418 (3)C10—H10A0.9500
N1—H1A0.80 (4)C11—C121.390 (4)
C1—C61.394 (3)C11—H11A0.9500
C1—C21.402 (3)C12—C131.383 (4)
C2—C31.392 (3)C13—C141.387 (4)
C3—C41.393 (3)C13—H13A0.9500
C3—C71.502 (3)C14—H14A0.9500
C4—C51.386 (3)
O2—S1—O1119.91 (10)C1—C6—H6A119.7
O2—S1—N1108.45 (10)O3—C7—O4124.6 (2)
O1—S1—N1104.97 (10)O3—C7—C3125.4 (2)
O2—S1—C9108.08 (10)O4—C7—C3109.98 (19)
O1—S1—C9108.68 (10)O4—C8—H8A109.5
N1—S1—C9105.91 (10)O4—C8—H8B109.5
C7—O3—Br1i134.06 (17)H8A—C8—H8B109.5
C7—O4—C8117.9 (2)O4—C8—H8C109.5
C1—N1—S1121.14 (16)H8A—C8—H8C109.5
C1—N1—H1A118 (2)H8B—C8—H8C109.5
S1—N1—H1A110 (2)C14—C9—C10121.5 (2)
C6—C1—C2118.7 (2)C14—C9—S1119.90 (18)
C6—C1—N1119.76 (19)C10—C9—S1118.60 (17)
C2—C1—N1121.51 (19)C11—C10—C9119.1 (2)
C3—C2—C1120.81 (19)C11—C10—H10A120.4
C3—C2—Br1119.86 (16)C9—C10—H10A120.4
C1—C2—Br1119.31 (16)C10—C11—C12119.1 (2)
C2—C3—C4119.4 (2)C10—C11—H11A120.5
C2—C3—C7121.8 (2)C12—C11—H11A120.5
C4—C3—C7118.8 (2)C13—C12—C11121.9 (2)
C5—C4—C3120.3 (2)C13—C12—Cl1119.4 (2)
C5—C4—H4A119.8C11—C12—Cl1118.8 (2)
C3—C4—H4A119.8C12—C13—C14119.0 (2)
C4—C5—C6120.0 (2)C12—C13—H13A120.5
C4—C5—H5A120.0C14—C13—H13A120.5
C6—C5—H5A120.0C9—C14—C13119.4 (2)
C5—C6—C1120.7 (2)C9—C14—H14A120.3
C5—C6—H6A119.7C13—C14—H14A120.3
O2—S1—N1—C147.0 (2)C8—O4—C7—C3179.6 (2)
O1—S1—N1—C1176.30 (17)C2—C3—C7—O375.4 (3)
C9—S1—N1—C168.80 (19)C4—C3—C7—O3104.3 (3)
S1—N1—C1—C664.4 (3)C2—C3—C7—O4105.9 (3)
S1—N1—C1—C2118.6 (2)C4—C3—C7—O474.3 (3)
C6—C1—C2—C31.4 (3)O2—S1—C9—C145.6 (2)
N1—C1—C2—C3175.7 (2)O1—S1—C9—C14137.26 (19)
C6—C1—C2—Br1179.72 (16)N1—S1—C9—C14110.4 (2)
N1—C1—C2—Br12.6 (3)O2—S1—C9—C10175.16 (17)
C1—C2—C3—C42.6 (3)O1—S1—C9—C1043.5 (2)
Br1—C2—C3—C4179.04 (17)N1—S1—C9—C1068.8 (2)
C1—C2—C3—C7177.6 (2)C14—C9—C10—C111.2 (4)
Br1—C2—C3—C70.7 (3)S1—C9—C10—C11179.62 (18)
C2—C3—C4—C51.3 (3)C9—C10—C11—C121.2 (4)
C7—C3—C4—C5178.9 (2)C10—C11—C12—C130.3 (4)
C3—C4—C5—C61.2 (3)C10—C11—C12—Cl1179.35 (19)
C4—C5—C6—C12.5 (3)C11—C12—C13—C140.6 (4)
C2—C1—C6—C51.2 (3)Cl1—C12—C13—C14179.75 (19)
N1—C1—C6—C5178.3 (2)C10—C9—C14—C130.3 (4)
Br1i—O3—C7—O427.5 (4)S1—C9—C14—C13179.46 (18)
Br1i—O3—C7—C3150.97 (18)C12—C13—C14—C90.6 (4)
C8—O4—C7—O31.0 (4)
Symmetry code: (i) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.80 (4)2.22 (4)2.978 (3)158 (3)
Symmetry code: (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H11BrClNO4S
Mr404.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)7.9206 (2), 9.4600 (3), 20.0915 (6)
β (°) 94.505 (3)
V3)1500.79 (8)
Z4
Radiation typeCu Kα
µ (mm1)6.84
Crystal size (mm)1.06 × 0.88 × 0.52
Data collection
DiffractometerAgilent Xcalibur (Ruby, Gemini)
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Agilent, 2010), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.049, 0.198
No. of measured, independent and
observed [I > 2σ(I)] reflections
5248, 3012, 2873
Rint0.033
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.08
No. of reflections3012
No. of parameters205
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.65

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.80 (4)2.22 (4)2.978 (3)158 (3)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

AAK wishes to acknowledge Dr A. K. Wutoh, Dean of the College of Pharmacy, for the purchase of chemicals and solvents, as well as RCMI, Howard University, and CDRD, College of Pharmacy, Howard University, for their support. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationAgilent (2010). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals
First citationHu, L., Li, Z.-R., Jiang, J.-D. & Boykin, D. W. (2008). Anticancer Agents Med. Chem. 8, 739–745.  CrossRef PubMed CAS
First citationKulkarni, A. A., King, C., Butcher, R. J. & Fortunak, J. M. D. (2012a). Acta Cryst. E68, o1498.  CSD CrossRef IUCr Journals
First citationKulkarni, A. A., King, C. L., Fortunak, J. M. D. & Butcher, R. J. (2012b). Acta Cryst. E68, o1497.  CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWydysh, E. A., Medghalchi, S. M., Vadlamudi, A. & Townsend, C. A. (2009). J. Med. Chem. 52, 3317–3327.  Web of Science CrossRef PubMed CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds