[Journal logo]

Volume 69 
Part 2 
Page o219  
February 2013  

Received 28 November 2012
Accepted 24 December 2012
Online 12 January 2013

Key indicators
Single-crystal X-ray study
T = 173 K
Mean [sigma](C-C) = 0.004 Å
R = 0.049
wR = 0.126
Data-to-parameter ratio = 14.8
Details
Open access

3-Methyl-1-tosyl-1H-indole-2-carbaldehyde

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
Correspondence e-mail: charles.dekoning@wits.ac.za

The title indole derivative, C17H15NO3S, crystallizes with two independent molecules in the asymmetric unit. The benzene ring of the tosyl group is almost perpedicular to the indole ring in both molecules, with interplanar angles of 82.60 (5)° and 81.82 (6)°. The two molecules are, as a consequence, able to form an almost centrosymmetric non-bonded dimer, in which the molecules are linked by pairs of C-H...[pi] interactions. The crystal structure displays a three-dimensional network of C-H...O interactions. A [pi]-[pi] interaction occurs between inversion-related indole rings with a centroid-centroid distance of 3.6774 (16) Å and an interplanar angle of 1.53 (15)°. This interaction leads to a stacking of molecules along the a axis.

Related literature

For studies of reactions involving indoles, see: Pathak et al. (2006[Pathak, R., Nhlapo, J. M., Govender, S., Michael, J. P., van Otterlo, W. A. L. & de Koning, C. B. (2006). Tetrahedron, 62, 2820-2830.]); Pelly et al. (2005[Pelly, P. C., Parkinson, C. J., van Otterlo, W. A. L. & de Koning, C. B. (2005). J. Org. Chem. 70, 10474-10481.]); Sharma et al. (2010[Sharma, V., Kumar, P. & Pathak, D. (2010). J. Heterocycl. Chem. 47, 491-502.]). It is interesting to note that the reaction used to synthesize this product has been reported to be ineffective when carried out in acetone, see: Kothandaraman et al. (2011[Kothandaraman, P., Mothe, S. R., Toh, S. S. M. & Chan, P. W. H. (2011). J. Org. Chem. 76, 7633-7640.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15NO3S

  • Mr = 313.36

  • Triclinic, [P \overline 1]

  • a = 8.4276 (2) Å

  • b = 13.0126 (3) Å

  • c = 14.2522 (4) Å

  • [alpha] = 79.968 (2)°

  • [beta] = 79.794 (2)°

  • [gamma] = 83.505 (2)°

  • V = 1509.25 (7) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.23 mm-1

  • T = 173 K

  • 0.28 × 0.25 × 0.05 mm

Data collection
  • Bruker APEX-II CCD diffractometer

  • 16378 measured reflections

  • 5936 independent reflections

  • 3668 reflections with I > 2[sigma](I)

  • Rint = 0.051

Refinement
  • R[F2 > 2[sigma](F2)] = 0.049

  • wR(F2) = 0.126

  • S = 1.01

  • 5936 reflections

  • 401 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.31 e Å-3

  • [Delta][rho]min = -0.27 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3, Cg4, Cg5 and Cg6 are the centroids of the C11B-C16B, C3B-C8B, C3A-C8A and C11A-C16A rings, respectively.

D-H...A D-H H...A D...A D-H...A
C16B-H16B...O1Bi 0.95 2.50 3.153 (3) 126
C12A-H12A...O1Aii 0.95 2.48 3.218 (3) 134
C16A-H16A...O2Aiii 0.95 2.52 3.220 (3) 131
C17B-H17F...O2Biv 0.98 2.53 3.396 (4) 147
C8A-H8A...Cg3 0.95 2.87 3.804 (3) 167
C9A-H9C...Cg4 0.98 2.80 3.726 (4) 158
C9B-H9D...Cg5 0.98 2.65 3.576 (4) 158
C9B-H9E...Cg6 0.98 2.95 3.755 (4) 140
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y, -z+1; (iii) -x, -y, -z; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and SCHAKAL-99 (Keller, 1999[Keller, E. (1999). SCHAKAL99. University of Freiberg, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.].


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2083 ).


Acknowledgements

This work was supported by the University of the Witwatersrand and National Research Foundation, Pretoria.

References

Bruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Keller, E. (1999). SCHAKAL99. University of Freiberg, Germany.
Kothandaraman, P., Mothe, S. R., Toh, S. S. M. & Chan, P. W. H. (2011). J. Org. Chem. 76, 7633-7640.  [CSD] [CrossRef] [ChemPort] [PubMed]
Pathak, R., Nhlapo, J. M., Govender, S., Michael, J. P., van Otterlo, W. A. L. & de Koning, C. B. (2006). Tetrahedron, 62, 2820-2830.  [ISI] [CrossRef] [ChemPort]
Pelly, P. C., Parkinson, C. J., van Otterlo, W. A. L. & de Koning, C. B. (2005). J. Org. Chem. 70, 10474-10481.  [CrossRef] [PubMed] [ChemPort]
Sharma, V., Kumar, P. & Pathak, D. (2010). J. Heterocycl. Chem. 47, 491-502.  [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [details]


Acta Cryst (2013). E69, o219  [ doi:10.1107/S160053681205180X ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.