organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-N-(4,6-di­methyl­pyrimidin-2-yl)benzene­sulfonamide–2-nitro­benzoic acid (1/1)

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 15 December 2012; accepted 8 January 2013; online 12 January 2013)

In the asymmetric unit of the title co-crystal, C12H14N4O2S·C7H5NO4, the sulfamethazine and 2-nitro­benzoic acid mol­ecules form a heterodimer through inter­molecular amide–carb­oxy­lic acid N—H⋯O and carb­oxy­lic acid–pyrimidine O—H⋯N hydrogen-bond pairs, giving a cyclic motif [graph set R22(8)]. The dihedral angle between the two aromatic ring systems in the sulfamethazine mol­ecule is 88.96 (18)° and the nitro group of the acid is 50% rotationally disordered. Secondary aniline N—H⋯Osulfone hydrogen-bonding associations give a two-dimensional structure lying parallel to the ab plane.

Related literature

For background to sulfamethazole as a model for co-crystal formation, see: Caira (2007[Caira, M. R. (2007). Mol. Pharm. 4, 310-316.]); Ghosh et al. (2011[Ghosh, S., Bag, P. P. & Reddy, C. M. (2011). Cryst. Growth Des. 11, 3489-3503.]). For structures of 1:1 adducts of sulfamethazine with nitro­benzoic acid analogues, see: Lynch et al. (2000[Lynch, D. E., Sandhu, P. & Parsons, S. (2000). Aust. J. Chem. 53, 383-387.]); Smith & Wermuth (2012[Smith, G. & Wermuth, U. D. (2012). Acta Cryst. E68, o1649-o1650.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N4O2S·C7H5NO4

  • Mr = 445.46

  • Orthorhombic, P n a 21

  • a = 14.2945 (4) Å

  • b = 8.0115 (3) Å

  • c = 19.0962 (5) Å

  • V = 2186.91 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 200 K

  • 0.30 × 0.21 × 0.12 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.964, Tmax = 0.980

  • 5541 measured reflections

  • 2777 independent reflections

  • 2587 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.099

  • S = 1.04

  • 2777 reflections

  • 286 parameters

  • 29 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 565 Friedel pairs

  • Flack parameter: 0.08 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H12⋯N1A 0.90 1.77 2.671 (4) 180
N2A—H2A⋯O11 0.90 2.01 2.862 (4) 158
N41A—H41A⋯O11Ai 0.92 2.18 2.990 (3) 147
N41A—H42A⋯O12Aii 0.83 2.24 2.973 (3) 146
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) x, y-1, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The drug sulfamethazine [4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide] has been used as a model for co-crystal formation (Caira, 2007; Ghosh et al., 2011)), commonly forming 1:1 adducts with carboxylic acids and amides, particularly the benzoic acid analogues. The structures of a number of these are known, including those with 4-nitrobenzoic acid (Smith & Wermuth, 2012) and 2,4-dinitrobenzoic acid (Lynch et al., 2000). In these co-crystals, and in sulfamethazine adducts generally a common structural feature is the cyclic heterodimeric hydrogen-bonding association involving amide N—H···Ocarboxyl–carboxylic acid O—H···Npyrimidine pairs [graph set R22(8) (Etter et al., 1990)].

Our 1:1 stoichiometric interaction of sulfamethazine with 2-nitrobenzoic acid gave the co-crystalline adduct C12H14N4O2S. C7H5NO4, the title compound and the structure is reported herein. In the sulfamethazine component (Fig. 1) the dihedral angle between the pyrimidine ring and the phenyl ring is 89.98 (18)° which compares with 82.33 (9)° and 78.77 (8)° for the two independent molecules in the 4-nitrobenzoic acid analogue (Smith & Wermuth, 2012). The angles between these two rings and the phenyl ring of the 2-nitrobenzoic acid molecule are 9.65 (19) and 88.22 (19)°, respectively. In the crystal the sulfamethazine and 2-nitrobenzoic acid molecules interact as previously described, giving cyclic R22(8) hydrogen-bonded heterodimers (Table 1, Fig. 1).

Intermolecular amine N—H···Osulfone hydrogen-bonding interactions link the heterodimer units along a (Fig. 2) as well as down b, forming two-dimensional sheet structures which extend along [110]. Unlike the isomeric 4-nitrobenzoic acid adduct there are no ππ interactions present in the structure but there are 52.2 Å3 potential solvent accessible voids present. The oxygen atoms of the nitro group of the adduct acid molecule are rotationally disordered over four 50% occupancy sites [O21, O22 and O23, O24]. In the absence of chirality in the molecules, the Flack absolute structure parameter [0.08 (9)] is of no structural significance.

Related literature top

For background to sulfamethazole as a model for co-crystal formation, see: Caira (2007); Ghosh et al. (2011). For structures of 1:1 adducts of sulfamethazine with nitrobenzoic acid analogues, see: Lynch et al. (2000); Smith & Wermuth (2012). For graph-set analysis, see: Etter et al. (1990).

Experimental top

The title compound was formed in the interaction of 1 mmol quantities of 4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide (sulfamethazine) and 2-nitrobenzoic acid in 50 ml of 50% ethanol–water with 10 min refluxing. Partial evaporation of the solvent gave a pale yellow solid which gave crystal plates suitable for the X-ray analysis after recrystallization from ethanol.

Refinement top

Hydrogen atoms potentially involved in hydrogen-bonding interactions were located by difference methods but were subsequently allowed to ride in the refinement with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). Other H atoms were included at calculated positions [C—H (aromatic) = 0.93 Å or C—H (methyl) = 0.96 Å] and also treated as riding, with Uiso(H) = 1.2Ueq(C) (aromatic) or 1.5Ueq(C) (methyl). The nitro group was found to be rotationally disordered giving occupancies for the oxygen atoms O21, O22 [S.O.F. = 0.51 (1)] and O23, O24 [0.49 (1)] respectively and these were fixed at 0.50 in the final refinement cycles.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom-numbering scheme for the title co-crystal, with inter-species hydrogen bonds shown as a dashed lines. The nitro group of the adduct molecule is 50% rotationally disordered and non-H atoms are shown as 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A perspective view of the two-dimensional structure which extends along [110], showing hydrogen-bonding associations as dashed lines, with the nitro group disorder not shown.
[Figure 3] Fig. 3. A view of the sheet structure along the b axis.
4-Amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide– 2-nitrobenzoic acid (1/1) top
Crystal data top
C12H14N4O2S·C7H5NO4F(000) = 928
Mr = 445.46Dx = 1.353 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3011 reflections
a = 14.2945 (4) Åθ = 3.1–28.8°
b = 8.0115 (3) ŵ = 0.19 mm1
c = 19.0962 (5) ÅT = 200 K
V = 2186.91 (12) Å3Plate, yellow
Z = 40.30 × 0.21 × 0.12 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2777 independent reflections
Radiation source: Enhance (Mo) X-ray source2587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.1°
ω scansh = 179
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 89
Tmin = 0.964, Tmax = 0.980l = 238
5541 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.5356P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2777 reflectionsΔρmax = 0.29 e Å3
286 parametersΔρmin = 0.21 e Å3
29 restraintsAbsolute structure: Flack (1983), 565 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (9)
Crystal data top
C12H14N4O2S·C7H5NO4V = 2186.91 (12) Å3
Mr = 445.46Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 14.2945 (4) ŵ = 0.19 mm1
b = 8.0115 (3) ÅT = 200 K
c = 19.0962 (5) Å0.30 × 0.21 × 0.12 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2777 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2587 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.980Rint = 0.023
5541 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.29 e Å3
S = 1.04Δρmin = 0.21 e Å3
2777 reflectionsAbsolute structure: Flack (1983), 565 Friedel pairs
286 parametersAbsolute structure parameter: 0.08 (9)
29 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A0.44672 (4)1.02307 (8)0.75273 (5)0.0249 (2)
O11A0.35295 (13)0.9968 (3)0.72869 (13)0.0342 (7)
O12A0.50151 (14)1.1513 (3)0.72083 (12)0.0326 (7)
N1A0.47662 (18)1.1033 (3)0.95152 (15)0.0352 (8)
N2A0.43078 (16)1.0714 (3)0.83654 (14)0.0288 (8)
N3A0.59047 (17)1.0898 (3)0.86027 (15)0.0334 (8)
N41A0.65507 (17)0.3924 (3)0.7489 (2)0.0538 (12)
C2A0.5032 (2)1.0887 (4)0.88442 (16)0.0273 (9)
C4A0.6585 (2)1.1028 (4)0.9085 (2)0.0392 (11)
C5A0.6372 (3)1.1216 (5)0.9787 (2)0.0497 (14)
C6A0.5446 (3)1.1221 (5)0.99900 (19)0.0429 (11)
C11A0.50792 (17)0.8370 (3)0.75032 (18)0.0262 (8)
C21A0.60295 (19)0.8371 (4)0.73347 (16)0.0286 (9)
C31A0.6509 (2)0.6892 (4)0.73148 (18)0.0312 (9)
C41A0.60616 (19)0.5374 (3)0.7475 (2)0.0324 (9)
C42A0.7565 (2)1.0928 (6)0.8819 (3)0.0592 (15)
C51A0.5098 (2)0.5407 (4)0.76412 (18)0.0323 (9)
C61A0.46169 (19)0.6885 (4)0.76475 (17)0.0289 (9)
C62A0.5143 (3)1.1416 (7)1.0737 (2)0.0663 (16)
O110.28633 (18)0.8862 (4)0.90536 (17)0.0639 (10)
O120.30259 (17)1.0522 (4)0.99775 (15)0.0505 (9)
O210.2682 (14)0.800 (3)1.1121 (18)0.083 (5)0.500
O220.1915 (11)1.0471 (16)1.1479 (5)0.095 (4)0.500
O230.1968 (11)0.9621 (18)1.1692 (5)0.095 (4)0.500
O240.2837 (14)0.842 (3)1.1026 (18)0.083 (5)0.500
N20.2084 (2)0.9099 (6)1.1124 (2)0.0668 (14)
C10.1619 (2)0.9013 (4)0.98691 (19)0.0378 (10)
C20.1370 (2)0.8973 (5)1.05718 (19)0.0408 (11)
C30.0460 (2)0.8689 (5)1.0792 (2)0.0503 (14)
C40.0216 (3)0.8434 (6)1.0290 (3)0.0613 (16)
C50.0011 (3)0.8421 (7)0.9596 (3)0.0680 (18)
C60.0926 (3)0.8725 (6)0.9385 (2)0.0580 (14)
C110.2569 (2)0.9455 (5)0.95931 (19)0.0387 (11)
H2A0.375601.033300.852400.0350*
H5A0.684501.133901.011700.0600*
H21A0.633500.936900.723700.0340*
H31A0.713900.689000.719400.0380*
H41A0.716500.382800.735900.0650*
H42A0.624900.304600.754700.0650*
H43A0.787300.998400.902500.0890*
H44A0.789501.193000.894200.0890*
H45A0.755701.080700.831900.0890*
H51A0.478800.441800.774700.0390*
H61A0.398000.689500.774800.0350*
H62A0.447301.137301.076200.0990*
H63A0.535801.247101.091300.0990*
H64A0.540401.053101.101300.0990*
H30.031100.867201.126600.0600*
H40.083500.826901.042600.0740*
H50.044800.820700.926300.0820*
H60.107100.873500.891000.0690*
H120.361501.069000.982300.0760*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0215 (3)0.0274 (3)0.0259 (3)0.0012 (2)0.0003 (3)0.0001 (4)
O11A0.0246 (10)0.0395 (11)0.0385 (13)0.0037 (8)0.0055 (10)0.0031 (10)
O12A0.0320 (11)0.0301 (11)0.0357 (12)0.0002 (8)0.0019 (10)0.0056 (11)
N1A0.0352 (14)0.0415 (16)0.0289 (14)0.0063 (12)0.0044 (12)0.0024 (13)
N2A0.0196 (12)0.0357 (13)0.0312 (14)0.0001 (10)0.0047 (11)0.0042 (12)
N3A0.0287 (13)0.0381 (15)0.0334 (15)0.0045 (11)0.0021 (12)0.0023 (13)
N41A0.0292 (12)0.0281 (13)0.104 (3)0.0001 (10)0.0144 (19)0.000 (2)
C2A0.0290 (15)0.0261 (15)0.0267 (16)0.0033 (12)0.0013 (13)0.0014 (13)
C4A0.0333 (17)0.0414 (18)0.043 (2)0.0065 (14)0.0031 (17)0.0012 (17)
C5A0.047 (2)0.063 (3)0.039 (2)0.0157 (18)0.0120 (18)0.003 (2)
C6A0.048 (2)0.050 (2)0.0306 (18)0.0159 (17)0.0001 (16)0.0002 (17)
C11A0.0234 (12)0.0310 (14)0.0242 (13)0.0008 (10)0.0014 (14)0.0014 (15)
C21A0.0236 (13)0.0308 (14)0.0314 (17)0.0061 (11)0.0053 (12)0.0009 (13)
C31A0.0209 (13)0.0333 (15)0.0395 (19)0.0001 (11)0.0049 (13)0.0029 (14)
C41A0.0264 (13)0.0318 (14)0.0391 (17)0.0005 (11)0.0013 (17)0.0005 (17)
C42A0.0316 (19)0.079 (3)0.067 (3)0.007 (2)0.006 (2)0.008 (3)
C51A0.0278 (14)0.0282 (14)0.041 (2)0.0072 (11)0.0010 (15)0.0015 (15)
C61A0.0190 (12)0.0346 (15)0.033 (2)0.0056 (10)0.0014 (13)0.0021 (14)
C62A0.080 (3)0.090 (3)0.029 (2)0.017 (3)0.001 (2)0.004 (2)
O110.0497 (15)0.092 (2)0.0499 (18)0.0238 (14)0.0210 (14)0.0240 (17)
O120.0360 (13)0.0713 (17)0.0443 (16)0.0111 (12)0.0148 (12)0.0126 (15)
O210.054 (6)0.123 (10)0.073 (8)0.001 (7)0.004 (4)0.065 (6)
O220.060 (3)0.186 (12)0.039 (5)0.011 (7)0.000 (5)0.033 (6)
O230.060 (3)0.186 (12)0.039 (5)0.011 (7)0.000 (5)0.033 (6)
O240.054 (6)0.123 (10)0.073 (8)0.001 (7)0.004 (4)0.065 (6)
N20.0385 (19)0.125 (3)0.037 (2)0.011 (2)0.0077 (17)0.001 (2)
C10.0342 (16)0.046 (2)0.0333 (18)0.0038 (14)0.0065 (16)0.0044 (17)
C20.0335 (17)0.052 (2)0.037 (2)0.0019 (15)0.0062 (16)0.0041 (17)
C30.043 (2)0.070 (3)0.038 (2)0.0094 (18)0.0142 (18)0.003 (2)
C40.036 (2)0.088 (3)0.060 (3)0.020 (2)0.010 (2)0.001 (3)
C50.042 (2)0.113 (4)0.049 (3)0.023 (2)0.008 (2)0.006 (3)
C60.043 (2)0.096 (3)0.035 (2)0.015 (2)0.0038 (17)0.005 (2)
C110.0347 (18)0.048 (2)0.0335 (19)0.0029 (15)0.0057 (16)0.0002 (17)
Geometric parameters (Å, º) top
S1A—O11A1.432 (2)C21A—C31A1.369 (4)
S1A—O12A1.428 (2)C31A—C41A1.408 (4)
S1A—N2A1.662 (3)C41A—C51A1.414 (4)
S1A—C11A1.729 (2)C51A—C61A1.369 (4)
O11—C111.210 (5)C5A—H5A0.9300
O12—C111.302 (5)C21A—H21A0.9300
O21—N21.23 (2)C31A—H31A0.9300
O22—N21.314 (13)C42A—H45A0.9600
O23—N21.174 (11)C42A—H43A0.9600
O24—N21.22 (2)C42A—H44A0.9600
O12—H120.9000C51A—H51A0.9300
N1A—C6A1.338 (5)C61A—H61A0.9300
N1A—C2A1.342 (4)C62A—H62A0.9600
N2A—C2A1.388 (4)C62A—H63A0.9600
N3A—C2A1.330 (4)C62A—H64A0.9600
N3A—C4A1.343 (4)C1—C61.375 (5)
N41A—C41A1.356 (3)C1—C111.499 (4)
N2A—H2A0.9000C1—C21.389 (5)
N41A—H41A0.9200C2—C31.386 (4)
N41A—H42A0.8300C3—C41.376 (6)
N2—C21.471 (5)C4—C51.365 (8)
C4A—C42A1.492 (4)C5—C61.390 (6)
C4A—C5A1.383 (5)C3—H30.9300
C5A—C6A1.379 (6)C4—H40.9300
C6A—C62A1.499 (5)C5—H50.9300
C11A—C21A1.396 (4)C6—H60.9300
C11A—C61A1.389 (4)
O11A—S1A—O12A118.83 (14)C11A—C21A—H21A120.00
O11A—S1A—N2A102.39 (13)C31A—C21A—H21A120.00
O11A—S1A—C11A109.77 (13)C21A—C31A—H31A120.00
O12A—S1A—N2A108.56 (13)C41A—C31A—H31A120.00
O12A—S1A—C11A109.35 (13)H43A—C42A—H44A109.00
N2A—S1A—C11A107.21 (15)C4A—C42A—H44A109.00
C2A—N1A—C6A116.8 (3)C4A—C42A—H43A109.00
S1A—N2A—C2A123.7 (2)H44A—C42A—H45A109.00
C2A—N3A—C4A116.2 (3)H43A—C42A—H45A109.00
C2A—N2A—H2A118.00C4A—C42A—H45A109.00
S1A—N2A—H2A111.00C61A—C51A—H51A120.00
C41A—N41A—H41A124.00C41A—C51A—H51A120.00
H41A—N41A—H42A118.00C11A—C61A—H61A120.00
C41A—N41A—H42A117.00C51A—C61A—H61A120.00
O24—N2—C2118.1 (16)H63A—C62A—H64A110.00
O23—N2—C2126.1 (8)C6A—C62A—H62A109.00
O21—N2—O22137.0 (16)C6A—C62A—H63A109.00
O21—N2—C2115.5 (15)H62A—C62A—H63A109.00
O22—N2—C2107.4 (7)H62A—C62A—H64A110.00
N1A—C2A—N3A126.6 (3)C6A—C62A—H64A109.00
N1A—C2A—N2A115.3 (3)C2—C1—C11125.3 (3)
N2A—C2A—N3A118.2 (3)C6—C1—C11117.1 (3)
N3A—C4A—C5A120.9 (3)C2—C1—C6117.5 (3)
C5A—C4A—C42A122.9 (4)N2—C2—C3116.4 (3)
N3A—C4A—C42A116.2 (4)C1—C2—C3122.5 (3)
C4A—C5A—C6A119.0 (4)N2—C2—C1120.9 (3)
N1A—C6A—C5A120.4 (3)C2—C3—C4118.2 (4)
N1A—C6A—C62A116.6 (4)C3—C4—C5120.7 (4)
C5A—C6A—C62A123.0 (4)C4—C5—C6120.3 (4)
C21A—C11A—C61A120.6 (2)C1—C6—C5120.8 (4)
S1A—C11A—C61A119.5 (2)O11—C11—C1121.4 (3)
S1A—C11A—C21A119.9 (2)O12—C11—C1114.3 (3)
C11A—C21A—C31A119.5 (3)O11—C11—O12124.3 (3)
C21A—C31A—C41A120.9 (3)C2—C3—H3121.00
C31A—C41A—C51A118.4 (2)C4—C3—H3121.00
N41A—C41A—C31A120.7 (3)C3—C4—H4120.00
N41A—C41A—C51A120.9 (3)C5—C4—H4120.00
C41A—C51A—C61A120.5 (3)C4—C5—H5120.00
C11A—C61A—C51A120.0 (3)C6—C5—H5120.00
C4A—C5A—H5A121.00C1—C6—H6120.00
C6A—C5A—H5A120.00C5—C6—H6120.00
O11A—S1A—N2A—C2A172.1 (2)O23—N2—C2—C331.7 (11)
O12A—S1A—N2A—C2A61.5 (3)O24—N2—C2—C136.8 (15)
C11A—S1A—N2A—C2A56.6 (3)O24—N2—C2—C3138.5 (14)
O11A—S1A—C11A—C21A145.0 (3)O22—N2—C2—C367.6 (7)
O11A—S1A—C11A—C61A34.6 (3)O23—N2—C2—C1153.1 (9)
O12A—S1A—C11A—C21A13.0 (3)C42A—C4A—C5A—C6A177.1 (4)
O12A—S1A—C11A—C61A166.6 (3)N3A—C4A—C5A—C6A1.8 (5)
N2A—S1A—C11A—C21A104.5 (3)C4A—C5A—C6A—N1A0.5 (6)
N2A—S1A—C11A—C61A75.9 (3)C4A—C5A—C6A—C62A180.0 (4)
O24—O21—N2—O23106 (6)C61A—C11A—C21A—C31A0.3 (5)
O24—O21—N2—C2102 (6)S1A—C11A—C61A—C51A178.9 (3)
O24—O21—N2—O2274 (7)S1A—C11A—C21A—C31A179.8 (3)
O23—O22—N2—C2127.6 (15)C21A—C11A—C61A—C51A1.5 (5)
O23—O22—N2—O2156 (3)C11A—C21A—C31A—C41A1.2 (5)
O23—O22—N2—O2482 (3)C21A—C31A—C41A—N41A176.6 (3)
O22—O23—N2—C269.3 (18)C21A—C31A—C41A—C51A1.5 (5)
O22—O23—N2—O24120 (2)C31A—C41A—C51A—C61A0.2 (5)
O22—O23—N2—O21142.5 (18)N41A—C41A—C51A—C61A177.9 (3)
O21—O24—N2—O22124 (5)C41A—C51A—C61A—C11A1.3 (5)
O21—O24—N2—O2383 (6)C6—C1—C2—N2173.8 (4)
O21—O24—N2—C288 (6)C6—C1—C2—C31.2 (6)
C2A—N1A—C6A—C62A178.9 (4)C11—C1—C2—N210.5 (6)
C6A—N1A—C2A—N2A179.3 (3)C11—C1—C2—C3174.5 (4)
C6A—N1A—C2A—N3A0.5 (5)C2—C1—C6—C50.6 (6)
C2A—N1A—C6A—C5A1.7 (5)C11—C1—C6—C5175.6 (4)
S1A—N2A—C2A—N1A170.5 (2)C2—C1—C11—O11149.7 (4)
S1A—N2A—C2A—N3A9.7 (4)C2—C1—C11—O1230.9 (5)
C4A—N3A—C2A—N2A178.5 (3)C6—C1—C11—O1134.5 (5)
C2A—N3A—C4A—C5A2.9 (5)C6—C1—C11—O12144.8 (4)
C4A—N3A—C2A—N1A1.8 (5)N2—C2—C3—C4175.0 (4)
C2A—N3A—C4A—C42A176.1 (3)C1—C2—C3—C40.2 (6)
O21—N2—C2—C3115.3 (15)C2—C3—C4—C51.6 (7)
O22—N2—C2—C1117.1 (7)C3—C4—C5—C62.3 (8)
O21—N2—C2—C160.0 (15)C4—C5—C6—C11.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···N1A0.901.772.671 (4)180
N2A—H2A···O110.902.012.862 (4)158
N41A—H41A···O11Ai0.922.182.990 (3)147
N41A—H42A···O12Aii0.832.242.973 (3)146
C3—H3···O12Aiii0.932.543.289 (4)138
C21A—H21A···O12A0.932.552.915 (4)104
C31A—H31A···O11Ai0.932.493.250 (4)139
C51A—H51A···O12Aii0.932.573.230 (4)129
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y1, z; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H14N4O2S·C7H5NO4
Mr445.46
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)200
a, b, c (Å)14.2945 (4), 8.0115 (3), 19.0962 (5)
V3)2186.91 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.30 × 0.21 × 0.12
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.964, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
5541, 2777, 2587
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.099, 1.04
No. of reflections2777
No. of parameters286
No. of restraints29
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.21
Absolute structureFlack (1983), 565 Friedel pairs
Absolute structure parameter0.08 (9)

Computer programs: CrysAlis PRO (Agilent, 2012), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···N1A0.901.772.671 (4)180
N2A—H2A···O110.902.012.862 (4)158
N41A—H41A···O11Ai0.922.182.990 (3)147
N41A—H42A···O12Aii0.832.242.973 (3)146
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y1, z.
 

Acknowledgements

The authors acknowledge financial support from the Australian Reseach Council and the Science and Engineering Faculty and the University Library, Queensland University of Technology.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals
First citationCaira, M. R. (2007). Mol. Pharm. 4, 310–316.  Web of Science CrossRef PubMed CAS
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationGhosh, S., Bag, P. P. & Reddy, C. M. (2011). Cryst. Growth Des. 11, 3489–3503.  Web of Science CSD CrossRef CAS
First citationLynch, D. E., Sandhu, P. & Parsons, S. (2000). Aust. J. Chem. 53, 383–387.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSmith, G. & Wermuth, U. D. (2012). Acta Cryst. E68, o1649–o1650.  CSD CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds