organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-[3-(Di­methyl­amino)­prop­yl]-10,10-di­methyl-9,10-di­hydro­anthracen-9-ol

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Biotechnology, Shridevi Institute of Engineering & Technology, Tumkur 572 106, India
*Correspondence e-mail: yathirajan@hotmail.com_and_akkurt@erciyes.edu.tr

(Received 29 November 2012; accepted 7 December 2012; online 4 January 2013)

The asymmetric unit of the title compound, C21H27NO, contains two mol­ecules (A and B). In mol­ecule A, the central ring of the anthrone unit adopts a shallow boat conformation and the dihedral angle between the benzene rings is 18.96 (7)°. In mol­ecule B, the central ring is close to being planar (r.m.s. deviation = 0.078 Å) and the dihedral angle between the aromatic rings is 7.82 (7)°. In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, forming zigzag C(7) chains of alternating A and B mol­ecules running parallel to [100]. The structure also features weak C—H⋯O and C—H⋯π inter­actions.

Related literature

For a historical perspective on the applications of anthrone, see: Trevelyan (1952[Trevelyan, W. E. (1952). Nature (London), 170, 626-627.]). For related structures see: Abboud et al. (1991[Abboud, K. A., Simonsen, S. H., Prasad, R. S. & Roberts, R. M. (1991). Acta Cryst. C47, 880-882.]); Fun et al. (2010[Fun, H.-K., Hemamalini, M., Siddaraju, B. P., Yathirajan, H. S. & Siddegowda, M. S. (2010). Acta Cryst. E66, o808-o809.], 2011[Fun, H.-K., Hemamalini, M., Siddegowda, M. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o1725.]); Siddaraju et al. (2011[Siddaraju, B. P., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Raju, C. R. (2011). Acta Cryst. E67, o2397.]); Yannoni & Silverman (1966[Yannoni, N. F. & Silverman, J. (1966). Acta Cryst. 21, 390-396.]).

[Scheme 1]

Experimental

Crystal data
  • C21H27NO

  • Mr = 309.44

  • Monoclinic, P 21

  • a = 11.79596 (9) Å

  • b = 9.17559 (7) Å

  • c = 16.75788 (13) Å

  • β = 92.2372 (7)°

  • V = 1812.41 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.53 mm−1

  • T = 123 K

  • 0.41 × 0.34 × 0.27 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemin) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.838, Tmax = 1.000

  • 12252 measured reflections

  • 5579 independent reflections

  • 5539 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.06

  • 5579 reflections

  • 425 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1564 Freidel pairs

  • Flack parameter: 0.08 (17)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C11A–C16A and C2B–C7B benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯N1B 0.84 2.03 2.8659 (16) 170
O1B—H1B⋯N1Ai 0.84 2.03 2.8428 (16) 161
C17A—H17B⋯O1Bii 0.99 2.56 3.3166 (17) 133
C20B—H20FCg1 0.98 2.82 3.5941 (17) 136
C21A—H21ACg2ii 0.98 2.97 3.8017 (18) 143
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Anthracene and its derivatives are long known polycyclic aromatic compounds showing a high potential for use in materials science (e.g. fluorescence probing, photochromic systems, electroluminescence) and several reviews have been published. Anthrone is a tricyclic aromatic hydrocarbon which is used for a popular cellulose assay and in the colorometric determination of carbohydrates (Trevelyan, 1952) and anthracene itself is used in the production of red dye alizarin. The crystal structures of 9,9,10,10-tetrachloro-9,10-dihydroanthracene (Yannoni & Silverman, 1966), cis-9,10-dibenzyl-9,10-dihydroanthracene (Abboud et al., 1991), 9,9-dimethyl-9,10-dihydroanthracene (Siddaraju et al., 2011); 10,10-dimethylanthrone (Fun et al., 2010) and melitracenium chloride (Fun et al., 2011) have been reported.

As part of our studies in this area, this paper reports the crystal structure of the title compound (I).

As shown in Fig. 1, there are two crystallographically independent molecules (A with the suffix A and B with the suffix B) in the asymmetric unit. In molecule A, the cyclohexane ring (C1A/C2A/C7A/C8A/C11A/C16A) adopts a shallow boat conformation, while the anthracene unit (C1B–C8B/C11B–C16B) with the cyclohexane ring in molecule B, is nearly planar, with a maximum deviation of 0.216 (1) Å for C1B. In molecules A and B, the dihedral angles between the terminal benzene rings are 18.96 (7) and 7.82 (7)°, respectively. In both molecules A and B, the values of the bond lengths and angles agree with each other.

The crystal structure is stabilized by O—H···N hydrogen bonds, forming zigzag C(7) chains running parallel to the [100] direction (Table 1, Fig. 2). Further stabilization is provided by C—H···π interactions (Table 1), involving the C11A–C16A (centroid Cg1) and C2B–C7B (centroid Cg2) benzene rings.

Related literature top

For a historical perspective on the applications of anthrone, see: Trevelyan (1952). For related structures see: Abboud et al. (1991); Fun et al. (2010, 2011); Siddaraju et al. (2011); Yannoni & Silverman (1966).

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chem, Bengaluru, India. Colourless prisms were obtained from toluene solution by slow evaporation (m.p.: 395 – 397 K).

Refinement top

All H atoms were positioned geometrically and refined using the riding-model approximation [O—H = 0.84 Å, aromatic C—H = 0.95 Å, methylene C—H = 0.99 Å and methyl C—H = 0.98 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(parent atom)].

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the the two molecules (A and B) in the asymmetric unit, with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing the O—H···N hydrogen bonding chains (dashed lines). H atoms not involved in the hydrogen bond interactions are omitted for clarity.
9-[3-(Dimethylamino)propyl]-10,10-dimethyl-9,10-dihydroanthracen-9-ol top
Crystal data top
C21H27NOF(000) = 672
Mr = 309.44Dx = 1.134 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 10729 reflections
a = 11.79596 (9) Åθ = 2.6–75.5°
b = 9.17559 (7) ŵ = 0.53 mm1
c = 16.75788 (13) ÅT = 123 K
β = 92.2372 (7)°Prism, colourless
V = 1812.41 (2) Å30.41 × 0.34 × 0.27 mm
Z = 4
Data collection top
Agilent Xcalibur (Ruby, Gemin)
diffractometer
5579 independent reflections
Radiation source: Enhance (Cu) X-ray Source5539 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 10.5081 pixels mm-1θmax = 75.6°, θmin = 2.6°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 118
Tmin = 0.838, Tmax = 1.000l = 2119
12252 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.2469P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
5579 reflectionsΔρmax = 0.23 e Å3
425 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 1564 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (17)
Crystal data top
C21H27NOV = 1812.41 (2) Å3
Mr = 309.44Z = 4
Monoclinic, P21Cu Kα radiation
a = 11.79596 (9) ŵ = 0.53 mm1
b = 9.17559 (7) ÅT = 123 K
c = 16.75788 (13) Å0.41 × 0.34 × 0.27 mm
β = 92.2372 (7)°
Data collection top
Agilent Xcalibur (Ruby, Gemin)
diffractometer
5579 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
5539 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 1.000Rint = 0.019
12252 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.23 e Å3
S = 1.06Δρmin = 0.23 e Å3
5579 reflectionsAbsolute structure: Flack (1983), 1564 Freidel pairs
425 parametersAbsolute structure parameter: 0.08 (17)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.52432 (8)0.52299 (12)0.20645 (6)0.0228 (3)
N1A0.85652 (10)0.40869 (15)0.41308 (7)0.0237 (3)
C1A0.60985 (11)0.62043 (17)0.23606 (8)0.0193 (4)
C2A0.55937 (11)0.73586 (17)0.28963 (8)0.0199 (4)
C3A0.46633 (12)0.69720 (19)0.33493 (8)0.0253 (4)
C4A0.42360 (13)0.7927 (2)0.39029 (9)0.0295 (5)
C5A0.47415 (14)0.9279 (2)0.40181 (9)0.0293 (4)
C6A0.56334 (14)0.96866 (19)0.35539 (9)0.0268 (4)
C7A0.60672 (12)0.87498 (17)0.29768 (8)0.0213 (4)
C8A0.70315 (12)0.92805 (18)0.24634 (8)0.0236 (4)
C9A0.81499 (13)0.9343 (2)0.29815 (10)0.0322 (5)
C10A0.67377 (15)1.08296 (19)0.21445 (9)0.0314 (5)
C11A0.72071 (12)0.82803 (17)0.17482 (8)0.0216 (4)
C12A0.78771 (13)0.87730 (19)0.11290 (9)0.0286 (4)
C13A0.80216 (14)0.7953 (2)0.04513 (9)0.0299 (5)
C14A0.75036 (13)0.65980 (19)0.03742 (8)0.0268 (4)
C15A0.68707 (12)0.60713 (18)0.09913 (8)0.0231 (4)
C16A0.67240 (11)0.68958 (17)0.16807 (7)0.0196 (4)
C17A0.69843 (12)0.52701 (17)0.28362 (8)0.0212 (4)
C18A0.65672 (12)0.44957 (19)0.35742 (9)0.0251 (4)
C19A0.74501 (12)0.34399 (18)0.39327 (8)0.0246 (4)
C20A0.84879 (17)0.5244 (2)0.47211 (10)0.0423 (6)
C21A0.93342 (14)0.2945 (2)0.44273 (11)0.0380 (5)
O1B0.02159 (8)0.56177 (12)0.29642 (6)0.0235 (3)
N1B0.39162 (10)0.69996 (15)0.09723 (7)0.0212 (3)
C1B0.07392 (11)0.49584 (16)0.26043 (8)0.0196 (4)
C2B0.15591 (11)0.43394 (17)0.32421 (8)0.0201 (4)
C3B0.18045 (13)0.52023 (18)0.39179 (8)0.0250 (4)
C4B0.25606 (14)0.4748 (2)0.45149 (9)0.0306 (5)
C5B0.31078 (15)0.3418 (2)0.44413 (9)0.0327 (5)
C6B0.28736 (14)0.25557 (19)0.37784 (9)0.0296 (4)
C7B0.20841 (12)0.29867 (17)0.31727 (8)0.0211 (4)
C8B0.18437 (12)0.19362 (17)0.24809 (8)0.0224 (4)
C9B0.15009 (15)0.04459 (18)0.28289 (9)0.0300 (5)
C10B0.29358 (13)0.1738 (2)0.20098 (9)0.0303 (4)
C11B0.08826 (12)0.24672 (17)0.19160 (8)0.0209 (4)
C12B0.05074 (13)0.15525 (18)0.12838 (8)0.0253 (4)
C13B0.03536 (14)0.19642 (19)0.07467 (8)0.0283 (4)
C14B0.08846 (13)0.3309 (2)0.08354 (9)0.0302 (5)
C15B0.05316 (12)0.42182 (19)0.14530 (9)0.0263 (4)
C16B0.03580 (11)0.38222 (17)0.19905 (8)0.0206 (4)
C17B0.12953 (12)0.62550 (17)0.21848 (8)0.0210 (4)
C18B0.23231 (12)0.58734 (17)0.17024 (8)0.0221 (4)
C19B0.28519 (12)0.72540 (17)0.13739 (8)0.0218 (4)
C20B0.44276 (13)0.8400 (2)0.07787 (10)0.0290 (4)
C21B0.37443 (14)0.6135 (2)0.02439 (9)0.0321 (5)
H3AA0.432200.604200.327500.0300*
H1A0.479100.567900.175200.0340*
H4AA0.360100.765700.420200.0350*
H5AA0.447700.992300.441400.0350*
H6AA0.596101.062500.362700.0320*
H9AA0.835900.835800.315900.0480*
H9AB0.804100.996400.344800.0480*
H9AC0.875600.974700.266500.0480*
H10A0.607401.077600.177500.0470*
H10B0.738401.122100.186400.0470*
H10C0.657001.146900.259300.0470*
H12A0.824000.969500.117800.0340*
H13A0.847400.831300.003800.0360*
H14A0.758200.603800.009700.0320*
H15A0.653100.513500.094500.0280*
H17A0.728200.452600.247200.0250*
H17B0.762700.590900.300400.0250*
H18A0.586500.395100.342800.0300*
H18B0.638000.523100.398100.0300*
H19A0.715000.301400.442500.0300*
H19B0.755300.263300.355000.0300*
H20A0.799900.602500.450500.0630*
H20B0.924700.563400.484900.0630*
H20C0.816500.485200.520700.0630*
H21A1.008800.336200.454300.0570*
H21B0.938800.218100.402200.0570*
H21C0.904300.252500.491600.0570*
H1B0.054400.499600.324200.0350*
H3BA0.144100.612100.396500.0300*
H4BA0.270600.534000.497300.0370*
H5BA0.364100.310200.484400.0390*
H10D0.315700.267600.178400.0460*
H10E0.279400.103400.157800.0460*
H10F0.354800.137800.237000.0460*
H6BA0.325500.165000.373100.0360*
H9BA0.084400.057400.316200.0450*
H12B0.085600.062700.122500.0300*
H9BB0.213700.004700.315300.0450*
H13B0.058200.133500.032000.0340*
H9BC0.130500.022800.239100.0450*
H14B0.148400.359700.047400.0360*
H15B0.089800.513100.151500.0320*
H17C0.071800.672000.182300.0250*
H17D0.153000.698300.259500.0250*
H18C0.208800.522100.125500.0260*
H18D0.289100.535200.204700.0260*
H19C0.230100.771600.099100.0260*
H19D0.299700.794700.181900.0260*
H20D0.455400.897000.126900.0430*
H20E0.391800.893600.040800.0430*
H20F0.515400.823400.052900.0430*
H21D0.446500.604200.002300.0480*
H21E0.318700.661900.011500.0480*
H21F0.346600.516400.038200.0480*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0206 (5)0.0237 (5)0.0239 (5)0.0039 (4)0.0010 (4)0.0011 (4)
N1A0.0259 (6)0.0257 (7)0.0193 (5)0.0023 (5)0.0004 (4)0.0028 (5)
C1A0.0179 (6)0.0216 (7)0.0182 (6)0.0007 (6)0.0002 (5)0.0016 (5)
C2A0.0178 (6)0.0248 (7)0.0170 (6)0.0030 (6)0.0017 (5)0.0019 (5)
C3A0.0227 (7)0.0288 (8)0.0244 (6)0.0012 (6)0.0025 (5)0.0017 (6)
C4A0.0246 (7)0.0394 (10)0.0250 (7)0.0065 (7)0.0063 (6)0.0029 (7)
C5A0.0330 (8)0.0334 (9)0.0216 (6)0.0139 (7)0.0007 (6)0.0018 (6)
C6A0.0327 (7)0.0251 (8)0.0221 (6)0.0046 (7)0.0043 (5)0.0016 (6)
C7A0.0222 (6)0.0244 (8)0.0170 (6)0.0029 (6)0.0038 (5)0.0014 (5)
C8A0.0254 (7)0.0227 (7)0.0224 (6)0.0037 (6)0.0017 (5)0.0006 (6)
C9A0.0282 (7)0.0373 (10)0.0306 (7)0.0078 (7)0.0051 (6)0.0024 (7)
C10A0.0436 (9)0.0231 (8)0.0274 (7)0.0041 (7)0.0008 (6)0.0011 (6)
C11A0.0198 (6)0.0244 (8)0.0204 (6)0.0003 (6)0.0009 (5)0.0022 (6)
C12A0.0279 (7)0.0269 (8)0.0312 (7)0.0039 (7)0.0049 (6)0.0055 (7)
C13A0.0302 (8)0.0348 (9)0.0252 (7)0.0031 (7)0.0090 (6)0.0091 (7)
C14A0.0286 (7)0.0329 (9)0.0190 (6)0.0075 (7)0.0024 (5)0.0003 (6)
C15A0.0215 (6)0.0250 (7)0.0226 (6)0.0032 (6)0.0002 (5)0.0000 (6)
C16A0.0161 (6)0.0254 (8)0.0171 (6)0.0022 (6)0.0008 (4)0.0022 (6)
C17A0.0194 (6)0.0234 (7)0.0209 (6)0.0016 (6)0.0018 (5)0.0024 (6)
C18A0.0227 (6)0.0284 (8)0.0243 (6)0.0007 (6)0.0034 (5)0.0059 (6)
C19A0.0272 (7)0.0236 (7)0.0228 (6)0.0031 (6)0.0002 (5)0.0056 (6)
C20A0.0493 (10)0.0491 (12)0.0284 (8)0.0105 (10)0.0013 (7)0.0117 (8)
C21A0.0283 (8)0.0422 (10)0.0432 (9)0.0010 (8)0.0035 (7)0.0227 (8)
O1B0.0211 (5)0.0223 (5)0.0274 (5)0.0032 (4)0.0067 (4)0.0035 (4)
N1B0.0191 (5)0.0239 (6)0.0207 (5)0.0001 (5)0.0013 (4)0.0020 (5)
C1B0.0181 (6)0.0188 (7)0.0221 (6)0.0009 (6)0.0031 (5)0.0018 (5)
C2B0.0197 (6)0.0213 (7)0.0194 (6)0.0016 (6)0.0021 (5)0.0005 (6)
C3B0.0271 (7)0.0230 (8)0.0250 (7)0.0022 (6)0.0035 (5)0.0028 (6)
C4B0.0377 (8)0.0315 (9)0.0223 (7)0.0074 (7)0.0030 (6)0.0036 (6)
C5B0.0368 (8)0.0343 (9)0.0260 (7)0.0019 (8)0.0110 (6)0.0026 (7)
C6B0.0316 (8)0.0261 (8)0.0306 (7)0.0043 (7)0.0058 (6)0.0008 (7)
C7B0.0225 (6)0.0208 (7)0.0200 (6)0.0003 (6)0.0006 (5)0.0011 (5)
C8B0.0252 (7)0.0190 (7)0.0228 (6)0.0024 (6)0.0002 (5)0.0001 (6)
C9B0.0430 (9)0.0195 (8)0.0271 (7)0.0012 (7)0.0040 (6)0.0014 (6)
C10B0.0284 (7)0.0334 (9)0.0293 (7)0.0075 (7)0.0028 (6)0.0037 (7)
C11B0.0214 (6)0.0224 (7)0.0189 (6)0.0031 (6)0.0027 (5)0.0015 (6)
C12B0.0302 (7)0.0237 (8)0.0224 (6)0.0039 (6)0.0046 (5)0.0010 (6)
C13B0.0318 (7)0.0321 (9)0.0210 (6)0.0116 (7)0.0006 (5)0.0018 (6)
C14B0.0242 (7)0.0393 (10)0.0267 (7)0.0062 (7)0.0054 (6)0.0053 (7)
C15B0.0210 (6)0.0301 (8)0.0278 (7)0.0008 (6)0.0003 (5)0.0033 (7)
C16B0.0186 (6)0.0232 (8)0.0201 (6)0.0030 (6)0.0032 (5)0.0026 (5)
C17B0.0214 (6)0.0175 (7)0.0241 (6)0.0008 (6)0.0018 (5)0.0015 (5)
C18B0.0202 (6)0.0215 (8)0.0246 (6)0.0008 (6)0.0024 (5)0.0009 (6)
C19B0.0214 (6)0.0212 (7)0.0227 (6)0.0013 (6)0.0013 (5)0.0011 (6)
C20B0.0245 (7)0.0285 (8)0.0341 (7)0.0012 (7)0.0033 (6)0.0108 (7)
C21B0.0298 (7)0.0418 (10)0.0248 (7)0.0000 (8)0.0040 (6)0.0072 (7)
Geometric parameters (Å, º) top
O1A—C1A1.4228 (17)C20A—H20C0.9800
O1A—H1A0.8400C20A—H20A0.9800
O1B—C1B1.4325 (17)C21A—H21C0.9800
O1B—H1B0.8400C21A—H21A0.9800
N1A—C20A1.456 (2)C21A—H21B0.9800
N1A—C19A1.4693 (19)C1B—C16B1.520 (2)
N1A—C21A1.460 (2)C1B—C17B1.541 (2)
N1B—C20B1.461 (2)C1B—C2B1.5230 (19)
N1B—C19B1.4661 (18)C2B—C7B1.394 (2)
N1B—C21B1.463 (2)C2B—C3B1.403 (2)
C1A—C2A1.525 (2)C3B—C4B1.379 (2)
C1A—C16A1.5201 (19)C4B—C5B1.388 (3)
C1A—C17A1.548 (2)C5B—C6B1.383 (2)
C2A—C7A1.398 (2)C6B—C7B1.407 (2)
C2A—C3A1.4042 (19)C7B—C8B1.526 (2)
C3A—C4A1.385 (2)C8B—C9B1.547 (2)
C4A—C5A1.387 (3)C8B—C11B1.528 (2)
C5A—C6A1.384 (2)C8B—C10B1.548 (2)
C6A—C7A1.405 (2)C11B—C12B1.409 (2)
C7A—C8A1.532 (2)C11B—C16B1.397 (2)
C8A—C10A1.553 (2)C12B—C13B1.383 (2)
C8A—C11A1.530 (2)C13B—C14B1.394 (2)
C8A—C9A1.552 (2)C14B—C15B1.381 (2)
C11A—C16A1.395 (2)C15B—C16B1.404 (2)
C11A—C12A1.404 (2)C17B—C18B1.524 (2)
C12A—C13A1.378 (2)C18B—C19B1.524 (2)
C13A—C14A1.389 (2)C3B—H3BA0.9500
C14A—C15A1.386 (2)C4B—H4BA0.9500
C15A—C16A1.3974 (19)C5B—H5BA0.9500
C17A—C18A1.525 (2)C6B—H6BA0.9500
C18A—C19A1.528 (2)C9B—H9BA0.9800
C3A—H3AA0.9500C9B—H9BB0.9800
C4A—H4AA0.9500C9B—H9BC0.9800
C5A—H5AA0.9500C10B—H10D0.9800
C6A—H6AA0.9500C10B—H10E0.9800
C9A—H9AA0.9800C10B—H10F0.9800
C9A—H9AC0.9800C12B—H12B0.9500
C9A—H9AB0.9800C13B—H13B0.9500
C10A—H10C0.9800C14B—H14B0.9500
C10A—H10B0.9800C15B—H15B0.9500
C10A—H10A0.9800C17B—H17C0.9900
C12A—H12A0.9500C17B—H17D0.9900
C13A—H13A0.9500C18B—H18C0.9900
C14A—H14A0.9500C18B—H18D0.9900
C15A—H15A0.9500C19B—H19C0.9900
C17A—H17A0.9900C19B—H19D0.9900
C17A—H17B0.9900C20B—H20D0.9800
C18A—H18B0.9900C20B—H20E0.9800
C18A—H18A0.9900C20B—H20F0.9800
C19A—H19B0.9900C21B—H21D0.9800
C19A—H19A0.9900C21B—H21E0.9800
C20A—H20B0.9800C21B—H21F0.9800
C1A—O1A—H1A109.00H21A—C21A—H21B109.00
C1B—O1B—H1B109.00H21A—C21A—H21C109.00
C19A—N1A—C21A109.01 (13)N1A—C21A—H21B109.00
C19A—N1A—C20A111.64 (12)N1A—C21A—H21A110.00
C20A—N1A—C21A110.27 (13)O1B—C1B—C2B110.51 (11)
C20B—N1B—C21B109.66 (12)O1B—C1B—C17B102.81 (11)
C19B—N1B—C20B109.28 (12)C2B—C1B—C16B112.46 (12)
C19B—N1B—C21B112.09 (12)O1B—C1B—C16B110.96 (11)
C16A—C1A—C17A106.22 (11)C16B—C1B—C17B109.92 (11)
C2A—C1A—C16A111.32 (12)C2B—C1B—C17B109.76 (11)
O1A—C1A—C16A111.05 (11)C1B—C2B—C7B123.06 (12)
O1A—C1A—C2A110.73 (11)C3B—C2B—C7B119.45 (13)
O1A—C1A—C17A106.66 (12)C1B—C2B—C3B117.48 (13)
C2A—C1A—C17A110.66 (11)C2B—C3B—C4B121.50 (15)
C3A—C2A—C7A119.76 (13)C3B—C4B—C5B119.42 (15)
C1A—C2A—C3A118.32 (13)C4B—C5B—C6B119.69 (15)
C1A—C2A—C7A121.84 (12)C5B—C6B—C7B121.63 (16)
C2A—C3A—C4A120.98 (15)C2B—C7B—C8B123.77 (12)
C3A—C4A—C5A119.57 (14)C6B—C7B—C8B117.95 (14)
C4A—C5A—C6A119.71 (15)C2B—C7B—C6B118.28 (13)
C5A—C6A—C7A121.78 (16)C7B—C8B—C9B108.40 (11)
C6A—C7A—C8A119.36 (14)C7B—C8B—C11B112.38 (12)
C2A—C7A—C8A122.59 (13)C9B—C8B—C10B108.88 (13)
C2A—C7A—C6A118.05 (13)C7B—C8B—C10B109.15 (12)
C7A—C8A—C10A108.88 (12)C10B—C8B—C11B109.49 (11)
C7A—C8A—C11A112.05 (12)C9B—C8B—C11B108.48 (12)
C7A—C8A—C9A109.34 (11)C8B—C11B—C16B123.31 (13)
C9A—C8A—C10A109.40 (13)C12B—C11B—C16B118.04 (13)
C10A—C8A—C11A108.34 (11)C8B—C11B—C12B118.65 (13)
C9A—C8A—C11A108.80 (12)C11B—C12B—C13B121.85 (15)
C12A—C11A—C16A118.26 (13)C12B—C13B—C14B119.59 (14)
C8A—C11A—C16A122.84 (12)C13B—C14B—C15B119.40 (14)
C8A—C11A—C12A118.90 (14)C14B—C15B—C16B121.37 (15)
C11A—C12A—C13A121.64 (15)C1B—C16B—C15B116.78 (13)
C12A—C13A—C14A119.81 (15)C11B—C16B—C15B119.72 (13)
C13A—C14A—C15A119.38 (14)C1B—C16B—C11B123.41 (12)
C14A—C15A—C16A121.05 (15)C1B—C17B—C18B115.22 (12)
C1A—C16A—C15A118.24 (13)C17B—C18B—C19B110.23 (12)
C1A—C16A—C11A121.87 (12)N1B—C19B—C18B113.78 (12)
C11A—C16A—C15A119.78 (12)C2B—C3B—H3BA119.00
C1A—C17A—C18A116.30 (12)C4B—C3B—H3BA119.00
C17A—C18A—C19A112.20 (12)C3B—C4B—H4BA120.00
N1A—C19A—C18A115.03 (13)C5B—C4B—H4BA120.00
C4A—C3A—H3AA120.00C4B—C5B—H5BA120.00
C2A—C3A—H3AA119.00C6B—C5B—H5BA120.00
C3A—C4A—H4AA120.00C5B—C6B—H6BA119.00
C5A—C4A—H4AA120.00C7B—C6B—H6BA119.00
C6A—C5A—H5AA120.00C8B—C9B—H9BA109.00
C4A—C5A—H5AA120.00C8B—C9B—H9BB109.00
C5A—C6A—H6AA119.00C8B—C9B—H9BC109.00
C7A—C6A—H6AA119.00H9BA—C9B—H9BB110.00
H9AA—C9A—H9AC109.00H9BA—C9B—H9BC109.00
H9AB—C9A—H9AC109.00H9BB—C9B—H9BC109.00
C8A—C9A—H9AB109.00C8B—C10B—H10D109.00
C8A—C9A—H9AA110.00C8B—C10B—H10E109.00
H9AA—C9A—H9AB109.00C8B—C10B—H10F109.00
C8A—C9A—H9AC109.00H10D—C10B—H10E110.00
C8A—C10A—H10A109.00H10D—C10B—H10F109.00
C8A—C10A—H10C109.00H10E—C10B—H10F109.00
C8A—C10A—H10B109.00C11B—C12B—H12B119.00
H10A—C10A—H10B109.00C13B—C12B—H12B119.00
H10A—C10A—H10C110.00C12B—C13B—H13B120.00
H10B—C10A—H10C109.00C14B—C13B—H13B120.00
C13A—C12A—H12A119.00C13B—C14B—H14B120.00
C11A—C12A—H12A119.00C15B—C14B—H14B120.00
C12A—C13A—H13A120.00C14B—C15B—H15B119.00
C14A—C13A—H13A120.00C16B—C15B—H15B119.00
C15A—C14A—H14A120.00C1B—C17B—H17C108.00
C13A—C14A—H14A120.00C1B—C17B—H17D108.00
C14A—C15A—H15A119.00C18B—C17B—H17C108.00
C16A—C15A—H15A119.00C18B—C17B—H17D108.00
C1A—C17A—H17B108.00H17C—C17B—H17D108.00
H17A—C17A—H17B107.00C17B—C18B—H18C110.00
C18A—C17A—H17B108.00C17B—C18B—H18D110.00
C1A—C17A—H17A108.00C19B—C18B—H18C110.00
C18A—C17A—H17A108.00C19B—C18B—H18D110.00
C19A—C18A—H18B109.00H18C—C18B—H18D108.00
C17A—C18A—H18B109.00N1B—C19B—H19C109.00
C19A—C18A—H18A109.00N1B—C19B—H19D109.00
H18A—C18A—H18B108.00C18B—C19B—H19C109.00
C17A—C18A—H18A109.00C18B—C19B—H19D109.00
N1A—C19A—H19B108.00H19C—C19B—H19D108.00
H19A—C19A—H19B108.00N1B—C20B—H20D109.00
N1A—C19A—H19A108.00N1B—C20B—H20E109.00
C18A—C19A—H19A108.00N1B—C20B—H20F109.00
C18A—C19A—H19B109.00H20D—C20B—H20E109.00
N1A—C20A—H20B109.00H20D—C20B—H20F110.00
N1A—C20A—H20C109.00H20E—C20B—H20F109.00
H20A—C20A—H20B109.00N1B—C21B—H21D109.00
N1A—C20A—H20A109.00N1B—C21B—H21E110.00
H20B—C20A—H20C109.00N1B—C21B—H21F109.00
H20A—C20A—H20C109.00H21D—C21B—H21E109.00
N1A—C21A—H21C109.00H21D—C21B—H21F109.00
H21B—C21A—H21C109.00H21E—C21B—H21F110.00
C20A—N1A—C19A—C18A60.80 (16)C1A—C17A—C18A—C19A171.98 (13)
C21A—N1A—C19A—C18A177.13 (12)C17A—C18A—C19A—N1A55.16 (17)
C21B—N1B—C19B—C18B65.90 (15)O1B—C1B—C2B—C3B43.87 (17)
C20B—N1B—C19B—C18B172.32 (12)O1B—C1B—C2B—C7B137.56 (13)
O1A—C1A—C2A—C7A151.17 (13)C16B—C1B—C2B—C3B168.48 (12)
O1A—C1A—C2A—C3A32.20 (17)C16B—C1B—C2B—C7B12.95 (18)
C17A—C1A—C2A—C3A85.86 (15)C17B—C1B—C2B—C3B68.83 (16)
C16A—C1A—C2A—C3A156.26 (12)C17B—C1B—C2B—C7B109.74 (15)
C16A—C1A—C2A—C7A27.11 (17)O1B—C1B—C16B—C11B137.55 (13)
O1A—C1A—C16A—C15A33.01 (17)O1B—C1B—C16B—C15B45.83 (17)
C2A—C1A—C16A—C11A27.04 (17)C2B—C1B—C16B—C11B13.19 (18)
C2A—C1A—C16A—C15A156.89 (12)C2B—C1B—C16B—C15B170.19 (12)
C17A—C1A—C16A—C11A93.49 (16)C17B—C1B—C16B—C11B109.41 (15)
C17A—C1A—C16A—C15A82.58 (15)C17B—C1B—C16B—C15B67.21 (15)
O1A—C1A—C17A—C18A63.45 (15)O1B—C1B—C17B—C18B176.96 (11)
C2A—C1A—C17A—C18A57.07 (17)C2B—C1B—C17B—C18B65.43 (15)
C16A—C1A—C17A—C18A178.02 (12)C16B—C1B—C17B—C18B58.75 (15)
O1A—C1A—C16A—C11A150.92 (13)C1B—C2B—C3B—C4B178.19 (14)
C17A—C1A—C2A—C7A90.77 (16)C7B—C2B—C3B—C4B0.4 (2)
C7A—C2A—C3A—C4A2.9 (2)C1B—C2B—C7B—C6B176.64 (13)
C1A—C2A—C3A—C4A173.82 (13)C1B—C2B—C7B—C8B4.0 (2)
C3A—C2A—C7A—C6A4.1 (2)C3B—C2B—C7B—C6B1.9 (2)
C1A—C2A—C7A—C6A172.48 (13)C3B—C2B—C7B—C8B177.45 (13)
C1A—C2A—C7A—C8A7.5 (2)C2B—C3B—C4B—C5B1.1 (2)
C3A—C2A—C7A—C8A175.92 (13)C3B—C4B—C5B—C6B1.1 (3)
C2A—C3A—C4A—C5A0.7 (2)C4B—C5B—C6B—C7B0.4 (3)
C3A—C4A—C5A—C6A3.0 (2)C5B—C6B—C7B—C2B1.9 (2)
C4A—C5A—C6A—C7A1.7 (2)C5B—C6B—C7B—C8B177.48 (15)
C5A—C6A—C7A—C8A178.12 (14)C2B—C7B—C8B—C9B125.39 (15)
C5A—C6A—C7A—C2A1.9 (2)C2B—C7B—C8B—C10B116.16 (15)
C2A—C7A—C8A—C11A13.35 (19)C2B—C7B—C8B—C11B5.51 (19)
C2A—C7A—C8A—C9A107.36 (16)C6B—C7B—C8B—C9B53.97 (17)
C2A—C7A—C8A—C10A133.17 (14)C6B—C7B—C8B—C10B64.48 (17)
C6A—C7A—C8A—C11A166.67 (13)C6B—C7B—C8B—C11B173.85 (13)
C6A—C7A—C8A—C9A72.63 (18)C7B—C8B—C11B—C12B175.11 (13)
C6A—C7A—C8A—C10A46.85 (17)C7B—C8B—C11B—C16B5.30 (19)
C7A—C8A—C11A—C12A166.18 (13)C9B—C8B—C11B—C12B55.28 (17)
C9A—C8A—C11A—C16A107.55 (16)C9B—C8B—C11B—C16B125.13 (15)
C7A—C8A—C11A—C16A13.47 (19)C10B—C8B—C11B—C12B63.42 (18)
C9A—C8A—C11A—C12A72.81 (17)C10B—C8B—C11B—C16B116.18 (15)
C10A—C8A—C11A—C16A133.60 (14)C8B—C11B—C12B—C13B179.62 (14)
C10A—C8A—C11A—C12A46.04 (18)C16B—C11B—C12B—C13B0.0 (2)
C16A—C11A—C12A—C13A2.9 (2)C8B—C11B—C16B—C1B4.4 (2)
C8A—C11A—C16A—C1A7.4 (2)C8B—C11B—C16B—C15B179.04 (13)
C12A—C11A—C16A—C1A172.99 (13)C12B—C11B—C16B—C1B175.16 (13)
C12A—C11A—C16A—C15A3.0 (2)C12B—C11B—C16B—C15B1.4 (2)
C8A—C11A—C16A—C15A176.62 (13)C11B—C12B—C13B—C14B1.1 (2)
C8A—C11A—C12A—C13A176.77 (14)C12B—C13B—C14B—C15B0.9 (2)
C11A—C12A—C13A—C14A0.5 (2)C13B—C14B—C15B—C16B0.5 (2)
C12A—C13A—C14A—C15A1.7 (2)C14B—C15B—C16B—C1B175.10 (13)
C13A—C14A—C15A—C16A1.5 (2)C14B—C15B—C16B—C11B1.7 (2)
C14A—C15A—C16A—C1A175.27 (13)C1B—C17B—C18B—C19B175.46 (11)
C14A—C15A—C16A—C11A0.9 (2)C17B—C18B—C19B—N1B173.94 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C11A–C16A and C2B–C7B benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N1B0.842.032.8659 (16)170
O1B—H1B···N1Ai0.842.032.8428 (16)161
C17A—H17B···O1Bii0.992.563.3166 (17)133
C20B—H20F···Cg10.982.823.5941 (17)136
C21A—H21A···Cg2ii0.982.973.8017 (18)143
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H27NO
Mr309.44
Crystal system, space groupMonoclinic, P21
Temperature (K)123
a, b, c (Å)11.79596 (9), 9.17559 (7), 16.75788 (13)
β (°) 92.2372 (7)
V3)1812.41 (2)
Z4
Radiation typeCu Kα
µ (mm1)0.53
Crystal size (mm)0.41 × 0.34 × 0.27
Data collection
DiffractometerAgilent Xcalibur (Ruby, Gemin)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.838, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12252, 5579, 5539
Rint0.019
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.06
No. of reflections5579
No. of parameters425
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.23
Absolute structureFlack (1983), 1564 Freidel pairs
Absolute structure parameter0.08 (17)

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C11A–C16A and C2B–C7B benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N1B0.842.032.8659 (16)170
O1B—H1B···N1Ai0.842.032.8428 (16)161
C17A—H17B···O1Bii0.992.563.3166 (17)133
C20B—H20F···Cg10.982.823.5941 (17)136
C21A—H21A···Cg2ii0.982.973.8017 (18)143
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

MK thanks the University of Mysore for research facilities. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationAbboud, K. A., Simonsen, S. H., Prasad, R. S. & Roberts, R. M. (1991). Acta Cryst. C47, 880–882.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Siddaraju, B. P., Yathirajan, H. S. & Siddegowda, M. S. (2010). Acta Cryst. E66, o808–o809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Siddegowda, M. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o1725.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddaraju, B. P., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Raju, C. R. (2011). Acta Cryst. E67, o2397.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrevelyan, W. E. (1952). Nature (London), 170, 626–627.  CrossRef PubMed CAS Web of Science Google Scholar
First citationYannoni, N. F. & Silverman, J. (1966). Acta Cryst. 21, 390–396.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds