supplementary materials


hb7029 scheme

Acta Cryst. (2013). E69, m128    [ doi:10.1107/S1600536813002146 ]

Bis(2-amino-4-methylpyrimidin-1-ium) hexaaquacobalt(II) disulfate dihydrate

M. Mirzaei, H. Eshtiagh-Hosseini, S. Zarghami, Z. Karrabi, M. Saeedi and J. T. Mague

Abstract top

In the title hydrated mixed-cation salt, (C5H8N3)2[Co(H2O)6](SO4)2·2H2O, the complete octahedral hexaaqua complex cation is generated by crystallographic inversion symmetry. In the crystal, the components are linked by O-H...O and N-H...O hydrogen bonds, the latter, involving pyrimidinium cations and sulfate anions, generating R22(8) loops. These, together with [pi]-[pi] interactions between centrosymmetrically related pyrimidinium cations [centroid-centroid separation = 3.5460 (8) Å], lead to the formation of a three-dimensional network.

Comment top

In an attempt to synthesize a cobalt complex of quinoxaline-2,3-dicarboxylic acid by conventional proton transfer processes, cobalt(II) sulfate hexahydrate and the acid were reacted with 2-amino-4-methylpyrimidine. The crystalline product obtained proved to be [Co(H2O)6][2a-4m-pym]2(SO4)2.2H2O (2a-4m-pym = 2-amino-4-methylpyrimidinium) with the cobalt cation having crystallographiclly imposed centrosymmetry (Fig. 1). The Co—O distances range from 2.0643 (9) to 2.1140 (10) A° while the O—Co—O angles range from 90.69 (4) to 93.59 (4)° leading to a somewhat distorted octahedral coordination geometry. The [Co(H2O)6]2+ cations and uncoordinated water molecules form sheets parallel to [110] which are capped on both sides by sulfate ions and held together by O—H···O hydrogen bonds (Fig. 2). N—H···O interactions bind the pyrimidinium cations to the sulfate ions (Fig. 3) with the cations from adjacent sheets intercalating one another (Fig. 2) and stabilized by pairwise π···π (3.546 A°) interactions between them (center pair of cations in Fig. 2). The N2—H2n···O6 and N3—H3a···O5 hydrogen bonding interactions generate R22(8) synthons.

Related literature top

For a report of the structure of the [Co(H2O)6]2+ ion, see: Shiu et al. (2004).

Experimental top

An aqueous solution of cobalt(II) sulfate hexahydrate (0.4 mmol, 0.8 mg) in distilled water (5 ml) was added to an aqueous solution of quinoxaline-2,3-dicarboxylic acid (0.11 mmol, 25 mg) and 2-amino-4-methyl pyrimidine (0.24 mmol, 26 mg). The mixture refluxed for 5 hrs at 75°C. Orange blocks were obtained by slow evaporation of the reaction mixture at room temperature.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXM (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing of the title compound viewed down a. Hydrogen bonds are indicated by dotted lines.
[Figure 3] Fig. 3. N—H···O hydrogen bonds and the R22(8) synthons (N2, N3, O5 O6).
Bis(2-amino-4-methylpyrimidin-1-ium) hexaaquacobalt(II) disulfate dihydrate top
Crystal data top
(C5H8N3)2[Co(H2O)6](SO4)2·2H2OZ = 1
Mr = 615.49F(000) = 321
Triclinic, P1Dx = 1.679 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4116 (6) ÅCell parameters from 8977 reflections
b = 7.7751 (7) Åθ = 2.8–29.2°
c = 13.0423 (12) ŵ = 0.96 mm1
α = 80.136 (1)°T = 100 K
β = 80.413 (1)°Block, orange
γ = 73.231 (1)°0.19 × 0.19 × 0.12 mm
V = 608.57 (10) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3085 independent reflections
Radiation source: fine-focus sealed tube2944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 29.2°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2009)
h = 88
Tmin = 0.780, Tmax = 0.893k = 1010
10780 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.2936P]
where P = (Fo2 + 2Fc2)/3
3085 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
(C5H8N3)2[Co(H2O)6](SO4)2·2H2Oγ = 73.231 (1)°
Mr = 615.49V = 608.57 (10) Å3
Triclinic, P1Z = 1
a = 6.4116 (6) ÅMo Kα radiation
b = 7.7751 (7) ŵ = 0.96 mm1
c = 13.0423 (12) ÅT = 100 K
α = 80.136 (1)°0.19 × 0.19 × 0.12 mm
β = 80.413 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3085 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2009)
2944 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.893Rint = 0.025
10780 measured reflectionsθmax = 29.2°
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.073Δρmax = 0.59 e Å3
S = 1.09Δρmin = 0.40 e Å3
3085 reflectionsAbsolute structure: ?
161 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5 °. in omega, collected at phi = 0.00, 90.00 and 180.00 °. and 2 sets of 800 frames, each of width 0.45 ° in phi, collected at omega = -30.00 and 210.00 °. The scan time was 10 sec/frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00000.50000.00000.00955 (8)
O10.68016 (15)0.50215 (13)0.06589 (8)0.01452 (19)
H1A0.57610.59650.05920.017*
H1B0.62530.42550.10610.017*
O21.13866 (16)0.27066 (13)0.09714 (8)0.0152 (2)
H2A1.23840.26440.13310.018*
H2B1.05130.21340.13170.018*
O31.01700 (15)0.67088 (13)0.10641 (8)0.01429 (19)
H3C1.13040.70800.09670.017*
H3D0.90250.75380.11930.017*
N10.77618 (19)0.29129 (15)0.48276 (9)0.0141 (2)
N21.13318 (19)0.19273 (15)0.53464 (9)0.0136 (2)
H2N1.22140.12830.58370.016*
N30.8459 (2)0.09569 (16)0.63508 (9)0.0169 (2)
H3A0.93700.02910.68250.020*
H3B0.70470.08840.64430.020*
C10.9176 (2)0.19330 (17)0.55062 (10)0.0126 (2)
C21.2141 (2)0.28771 (18)0.44771 (11)0.0159 (3)
H21.36550.28400.43610.019*
C31.0775 (2)0.38846 (18)0.37710 (11)0.0164 (3)
H31.13070.45550.31550.020*
C40.8539 (2)0.38965 (18)0.39882 (10)0.0143 (2)
C50.6904 (2)0.50542 (19)0.32901 (11)0.0184 (3)
H5A0.63190.42810.29600.028*
H5B0.76190.58070.27460.028*
H5C0.57010.58340.37060.028*
S10.64309 (5)0.07057 (4)0.22320 (2)0.00995 (8)
O40.48922 (15)0.25043 (12)0.19945 (8)0.01356 (19)
O50.86583 (15)0.09036 (13)0.22097 (8)0.0153 (2)
O60.57348 (16)0.01584 (13)0.32903 (8)0.0148 (2)
O70.64425 (16)0.04477 (13)0.14342 (8)0.0164 (2)
O80.36083 (16)0.82758 (13)0.05699 (8)0.01547 (19)
H8A0.41190.88030.09390.019*
H8B0.35130.89940.00090.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.00874 (12)0.00915 (12)0.01048 (13)0.00265 (8)0.00139 (9)0.00014 (8)
O10.0100 (4)0.0120 (4)0.0190 (5)0.0025 (3)0.0001 (4)0.0023 (3)
O20.0128 (4)0.0151 (4)0.0179 (5)0.0061 (4)0.0050 (4)0.0048 (4)
O30.0107 (4)0.0149 (4)0.0178 (5)0.0036 (3)0.0001 (4)0.0047 (4)
N10.0149 (5)0.0136 (5)0.0133 (5)0.0032 (4)0.0032 (4)0.0005 (4)
N20.0125 (5)0.0137 (5)0.0144 (5)0.0030 (4)0.0024 (4)0.0013 (4)
N30.0140 (5)0.0206 (6)0.0157 (6)0.0065 (4)0.0047 (4)0.0053 (4)
C10.0136 (6)0.0114 (6)0.0130 (6)0.0029 (4)0.0018 (5)0.0025 (4)
C20.0150 (6)0.0150 (6)0.0176 (6)0.0052 (5)0.0031 (5)0.0045 (5)
C30.0195 (7)0.0142 (6)0.0141 (6)0.0053 (5)0.0031 (5)0.0022 (5)
C40.0187 (6)0.0119 (6)0.0119 (6)0.0028 (5)0.0015 (5)0.0033 (4)
C50.0222 (7)0.0171 (6)0.0155 (6)0.0049 (5)0.0061 (5)0.0017 (5)
S10.00895 (15)0.01018 (15)0.01081 (15)0.00313 (11)0.00176 (11)0.00010 (11)
O40.0121 (4)0.0105 (4)0.0172 (5)0.0015 (3)0.0033 (4)0.0003 (3)
O50.0103 (4)0.0192 (5)0.0165 (5)0.0067 (4)0.0035 (4)0.0039 (4)
O60.0126 (4)0.0167 (5)0.0139 (5)0.0054 (4)0.0010 (4)0.0033 (4)
O70.0178 (5)0.0149 (5)0.0171 (5)0.0022 (4)0.0044 (4)0.0054 (4)
O80.0165 (5)0.0142 (4)0.0172 (5)0.0062 (4)0.0021 (4)0.0024 (4)
Geometric parameters (Å, º) top
Co1—O12.0838 (9)N3—H3A0.9099
Co1—O1i2.0838 (9)N3—H3B0.9100
Co1—O22.0643 (9)N3—C11.3216 (17)
Co1—O2i2.0643 (9)C2—H20.9500
Co1—O3i2.1140 (10)C2—C31.362 (2)
Co1—O32.1140 (10)C3—H30.9500
O1—H1A0.8400C3—C41.412 (2)
O1—H1B0.8400C4—C51.4935 (19)
O2—H2A0.8400C5—H5A0.9800
O2—H2B0.8400C5—H5B0.9800
O3—H3C0.8400C5—H5C0.9800
O3—H3D0.8400S1—O41.4772 (10)
N1—C11.3503 (17)S1—O51.4749 (9)
N1—C41.3352 (17)S1—O61.4851 (10)
N2—H2N0.9101S1—O71.4834 (10)
N2—C11.3621 (17)O8—H8A0.8400
N2—C21.3558 (17)O8—H8B0.8400
O1i—Co1—O1180.0H3A—N3—H3B118.7
O1i—Co1—O389.31 (4)C1—N3—H3A121.5
O1—Co1—O390.69 (4)C1—N3—H3B119.7
O1i—Co1—O3i90.69 (4)N1—C1—N2121.68 (12)
O1—Co1—O3i89.31 (4)N3—C1—N1119.51 (12)
O2i—Co1—O1i93.59 (4)N3—C1—N2118.82 (12)
O2—Co1—O193.59 (4)N2—C2—H2120.1
O2i—Co1—O186.41 (4)N2—C2—C3119.73 (13)
O2—Co1—O1i86.41 (4)C3—C2—H2120.1
O2—Co1—O2i180.0C2—C3—H3121.2
O2i—Co1—O388.21 (4)C2—C3—C4117.61 (12)
O2i—Co1—O3i91.79 (4)C4—C3—H3121.2
O2—Co1—O3i88.21 (4)N1—C4—C3122.45 (12)
O2—Co1—O391.79 (4)N1—C4—C5116.47 (12)
O3—Co1—O3i180.0C3—C4—C5121.07 (12)
Co1—O1—H1A121.3C4—C5—H5A109.5
Co1—O1—H1B133.1C4—C5—H5B109.5
H1A—O1—H1B105.3C4—C5—H5C109.5
Co1—O2—H2A123.6H5A—C5—H5B109.5
Co1—O2—H2B115.8H5A—C5—H5C109.5
H2A—O2—H2B109.5H5B—C5—H5C109.5
Co1—O3—H3C116.1O4—S1—O6110.08 (6)
Co1—O3—H3D115.8O4—S1—O7108.96 (6)
H3C—O3—H3D112.0O5—S1—O4109.75 (6)
C4—N1—C1117.86 (12)O5—S1—O6108.84 (6)
C1—N2—H2N118.7O5—S1—O7109.68 (6)
C2—N2—H2N120.7O7—S1—O6109.52 (6)
C2—N2—C1120.59 (12)H8A—O8—H8B102.1
N2—C2—C3—C40.4 (2)C2—N2—C1—N3178.45 (12)
C1—N1—C4—C32.59 (19)C2—C3—C4—N12.6 (2)
C1—N1—C4—C5176.26 (12)C2—C3—C4—C5176.18 (12)
C1—N2—C2—C31.75 (19)C4—N1—C1—N20.37 (19)
C2—N2—C1—N11.82 (19)C4—N1—C1—N3179.37 (12)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O80.841.922.7562 (14)171
O1—H1B···O40.841.972.8050 (13)178
O2—H2A···O4ii0.841.922.7533 (14)173
O2—H2B···O50.841.872.7077 (13)174
O3—H3C···O8ii0.841.922.7508 (13)170
O3—H3D···O7iii0.841.952.7865 (14)177
N2—H2N···O6iv0.911.812.7155 (15)172
N3—H3A···O5iv0.911.872.7776 (15)175
N3—H3B···O6v0.911.982.8775 (15)168
O8—H8A···O7iii0.841.982.7684 (14)156
O8—H8B···O7vi0.842.022.8582 (14)172
Symmetry codes: (ii) x+1, y, z; (iii) x, y+1, z; (iv) x+2, y, z+1; (v) x+1, y, z+1; (vi) x+1, y+1, z.
Selected bond lengths (Å) top
Co1—O12.0838 (9)Co1—O32.1140 (10)
Co1—O22.0643 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O80.841.922.7562 (14)171
O1—H1B···O40.841.972.8050 (13)178
O2—H2A···O4i0.841.922.7533 (14)173
O2—H2B···O50.841.872.7077 (13)174
O3—H3C···O8i0.841.922.7508 (13)170
O3—H3D···O7ii0.841.952.7865 (14)177
N2—H2N···O6iii0.911.812.7155 (15)172
N3—H3A···O5iii0.911.872.7776 (15)175
N3—H3B···O6iv0.911.982.8775 (15)168
O8—H8A···O7ii0.841.982.7684 (14)156
O8—H8B···O7v0.842.022.8582 (14)172
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+2, y, z+1; (iv) x+1, y, z+1; (v) x+1, y+1, z.
references
References top

Bruker (2009). SAINT. Bruker AXWS Inc., Madison, Wisconsin, USA.

Bruker (2010). APEX2. Bruker AXWS Inc., Madison, Wisconsin, USA.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2009). SADABS. University of Göttingen, Germany.

Shiu, K.-B., Yen, C.-H., Liao, F.-L. & Wang, S.-L. (2004). Acta Cryst. E60, m35–m37.