organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis[(tert-butylsulfanyl)methyl]-2,4,6-tri­methylbenzene

aInstituto de Química, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria, México, D.F., 04510, México, and bCiencias Básicas e Ingeniería, Recursos de la Tierra, Universidad Autónoma, Metropolitana. Av. Hidalgo Poniente, La Estación Lerma, Lerma de Villada Estado de México, CP 52006, México
*Correspondence e-mail: damor@unam.mx

(Received 22 January 2013; accepted 23 January 2013; online 31 January 2013)

The complete mol­ecule of the title compound, C19H32S2, is generated by crystallorgaphic twofold symmetry, with three C atoms lying on the axis. The Car—C—S—C (ar = aromatic) torsion angle is 156.2 (2) °. In the crystal, the mol­ecules are linked by very weak C—H⋯S inter­actions, generating [001] chains.

Related literature

For pincer complexes, see: Morales-Morales et al. (2007[Morales-Morales, D. & Jensen, C. M. (2007). Editors. The Chemistry of Pincer Compounds. Amsterdam: Elsevier.]); Morales-Morales (2004[Morales-Morales, D. (2004). Rev. Soc. Quim. Mex. 48, 338-346.]); Serrano-Becerra & Morales-Morales (2009[Serrano-Becerra, J. M. & Morales-Morales, D. (2009). Curr. Org. Synth. 6, 169-192.]). For uses of SCS pincer complexes in catalysis, see: Morales-Morales et al. (2007[Morales-Morales, D. & Jensen, C. M. (2007). Editors. The Chemistry of Pincer Compounds. Amsterdam: Elsevier.]); Singleton (2003[Singleton, J. T. (2003). Tetrahedron, 59, 1837-1857.]). For the structure of the pincer SCS ligand 1,3-bis­[(naphthalen-2-ylsufan­yl)meth­yl]benzene, see: Padilla-Mata et al. (2012[Padilla-Mata, E., German-Acacio, J. M., García-Eleno, M. A., Reyes-Martínez, R. & Morales-Morales, D. (2012). Acta Cryst. E68, o1429.]).

[Scheme 1]

Experimental

Crystal data
  • C19H32S2

  • Mr = 324.57

  • Monoclinic, C 2/c

  • a = 14.870 (4) Å

  • b = 14.233 (3) Å

  • c = 9.245 (2) Å

  • β = 103.693 (4)°

  • V = 1901.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 K

  • 0.34 × 0.09 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • 10088 measured reflections

  • 1743 independent reflections

  • 1022 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.143

  • S = 0.93

  • 1743 reflections

  • 102 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯S1i 0.96 3.11 3.980 (5) 151
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The fine tuning of both steric and electronic properties of pincer ligands is one of the most important goals for both organic and inorganic chemists nowdays, being this possible by the systematic variations and change of both the donor atoms and their substituents in the side arms of this current widely used ligands. Through the years, pincer complexes have become an important tool for synthetic organic chemists, mostly due to their well know robustness, thermal stability and unusual reactivities (Morales-Morales et al., 2007; Morales-Morales, 2004; Serrano-Becerra et al., 2009). Recently, non-phosphine-based ligands and their transition metal complexes have gained considerable attention as suitable and valuable alternatives in transition metal catalysed organic transformations. In this sense, SCS pincer complexes have shown to be efficient as potential catalysts in aldol reactions and Mizoroki-Heck and Suzuki-Miyaura couplings (Singleton, 2003). Previously, we have reported the structure of the pincer SCS ligand 1,3-Bis[(naphthalen-2-ylsufanyl)methyl]benzene (Padilla-Mata et al., 2012). Thus, in this opportunity we report here the crystal structure of the potential pincer ligand [2,4,6-trimethyl-1,3-bis(tert-butylsulfanyl)methyl]benzene, the molecular structure is shown in Figure 1.

In the asymmetric unit only half molecule of the title compound is found and a twofold axis is needed to complete the molecule. The (tert-butylsulfanyl)methyl moieties are up and down the plane of the phenyl ring with a torsion angle of 156.2 (2)° (C8—S1—C6—C2). The H atoms of the methyl group in the 2 position exhibit disorder in the crystal structure. The molecules in the crystal are linked by weak centrosymmetric intermolecular interactions C10—H10A···S1 with a distance of 3.11 Å, values that are only slightly higher to the sum of the van der Waals radii H—S (3.0 Å). These interactions generate a chain along the c axis direction.

Related literature top

For pincer complexes, see: Morales-Morales et al. (2007); Morales-Morales (2004); Serrano-Becerra & Morales-Morales (2009). For uses of SCS pincer complexes in catalysis, see: Morales-Morales et al. (2007); Singleton (2003). For the structure of the pincer SCS ligand 1,3-bis[(naphthalen-2-ylsufanyl)methyl]benzene, see: Padilla-Mata et al. (2012).

Experimental top

To a suspension of NaH (9 mg, 0.38 mmol) on freshly distilled THF (20 ml), 2-methyl-2-propanethiol (30 µL, 0.3 mmol) was slowly added. The resulting reaction mixture was allowed to proceed for 10 min. After this time, a solution of 2,4-bis-bromomethyl-1,3,5-trimethylbenzene (100 mg, 0.3 mmol) in THF (10 ml) was slowly added and the resulting mixture allowed to proceed for further 5 h under stirring at room temperature. After this time the mixture was filtered under vacuum through a short plug of Celite® and the resulting THF solution evaporated in a rotary evaporator to afford the product in a 97% yield. Yellow prisms were obtained by slow evaporation a CH2Cl2 saturated solution of the title compound.

Refinement top

H atoms were included in calculate positions (C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methylene H, and C—H = 0.96 Å for methyl H), and refined used riding model, with Uiso(H) = 1.2 Ueq of the carrier atom. C5 atom is on the twofold axis and their H-atoms were refined with half occupation.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids shown at the 40% probability level. Unlabelled atoms are generated by (1-x, y, 1/2-z).
[Figure 2] Fig. 2. Representation of C—H···S interactions founded in the title compounds. The hydrogen atoms not involved in the hydrogen bonding interactions were omitted.
1,3-Bis[(tert-butylsulfanyl)methyl]-2,4,6-trimethylbenzene top
Crystal data top
C19H32S2F(000) = 712
Mr = 324.57Dx = 1.134 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2375 reflections
a = 14.870 (4) Åθ = 2.8–24.9°
b = 14.233 (3) ŵ = 0.27 mm1
c = 9.245 (2) ÅT = 298 K
β = 103.693 (4)°Prism, yellow
V = 1901.1 (8) Å30.34 × 0.09 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
1022 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.084
Graphite monochromatorθmax = 25.4°, θmin = 2.0°
Detector resolution: 0.83 pixels mm-1h = 1717
ω scansk = 1717
10088 measured reflectionsl = 1111
1743 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0718P)2]
where P = (Fo2 + 2Fc2)/3
1743 reflections(Δ/σ)max < 0.001
102 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C19H32S2V = 1901.1 (8) Å3
Mr = 324.57Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.870 (4) ŵ = 0.27 mm1
b = 14.233 (3) ÅT = 298 K
c = 9.245 (2) Å0.34 × 0.09 × 0.06 mm
β = 103.693 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1022 reflections with I > 2σ(I)
10088 measured reflectionsRint = 0.084
1743 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 0.93Δρmax = 0.30 e Å3
1743 reflectionsΔρmin = 0.15 e Å3
102 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.27026 (6)0.42315 (7)0.11668 (9)0.0588 (3)
C10.50000.4725 (3)0.25000.0394 (10)
C20.43183 (18)0.5219 (2)0.1470 (3)0.0394 (7)
C30.4300 (2)0.6195 (2)0.1501 (3)0.0450 (8)
C40.50000.6656 (3)0.25000.0493 (12)
H40.50000.73090.25000.059*
C50.50000.3672 (3)0.25000.0533 (12)
H5A0.43740.34470.22400.064*0.50
H5B0.53010.34470.34730.064*0.50
H5C0.53250.34470.17870.064*0.50
C60.3595 (2)0.4693 (2)0.0319 (3)0.0457 (8)
H6A0.38870.41800.00900.055*
H6B0.33190.51130.04890.055*
C70.3549 (2)0.6770 (3)0.0509 (4)0.0659 (11)
H7A0.36810.74260.06820.079*
H7B0.29640.66260.07270.079*
H7C0.35230.66240.05140.079*
C80.1680 (2)0.4088 (3)0.0369 (4)0.0602 (10)
C90.1911 (3)0.3565 (3)0.1670 (4)0.0769 (12)
H9A0.21870.29700.13330.092*
H9B0.23380.39310.20710.092*
H9C0.13550.34650.24280.092*
C100.1274 (3)0.5047 (3)0.0864 (5)0.0895 (14)
H10A0.17070.54010.12670.107*
H10B0.11490.53750.00260.107*
H10C0.07090.49700.16130.107*
C110.1000 (3)0.3515 (3)0.0281 (5)0.0908 (14)
H11A0.04330.34340.04610.109*
H11B0.08760.38390.11240.109*
H11C0.12630.29100.05900.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0377 (5)0.0830 (7)0.0509 (5)0.0087 (5)0.0007 (4)0.0007 (5)
C10.026 (2)0.046 (3)0.047 (3)0.0000.0103 (19)0.000
C20.0263 (15)0.054 (2)0.0369 (17)0.0008 (14)0.0050 (13)0.0008 (14)
C30.0347 (17)0.051 (2)0.049 (2)0.0049 (15)0.0097 (15)0.0073 (16)
C40.049 (3)0.037 (3)0.063 (3)0.0000.014 (2)0.000
C50.036 (2)0.044 (3)0.074 (3)0.0000.002 (2)0.000
C60.0341 (16)0.059 (2)0.0400 (17)0.0006 (15)0.0012 (14)0.0023 (15)
C70.057 (2)0.067 (2)0.068 (3)0.0117 (19)0.004 (2)0.0121 (19)
C80.0406 (18)0.071 (2)0.062 (2)0.0081 (18)0.0016 (17)0.0020 (19)
C90.071 (3)0.086 (3)0.066 (3)0.013 (2)0.001 (2)0.011 (2)
C100.055 (2)0.089 (3)0.108 (3)0.012 (2)0.015 (2)0.000 (3)
C110.048 (2)0.118 (4)0.104 (3)0.026 (3)0.014 (2)0.013 (3)
Geometric parameters (Å, º) top
S1—C61.816 (3)C7—H7A0.9600
S1—C81.829 (3)C7—H7B0.9600
C1—C21.404 (3)C7—H7C0.9600
C1—C2i1.404 (3)C8—C91.522 (5)
C1—C51.499 (6)C8—C101.518 (5)
C2—C31.390 (4)C8—C111.530 (5)
C2—C61.520 (4)C9—H9A0.9600
C3—C41.383 (4)C9—H9B0.9600
C3—C71.508 (4)C9—H9C0.9600
C4—C3i1.383 (4)C10—H10A0.9600
C4—H40.9300C10—H10B0.9600
C5—H5A0.9600C10—H10C0.9600
C5—H5B0.9600C11—H11A0.9600
C5—H5C0.9600C11—H11B0.9600
C6—H6A0.9700C11—H11C0.9600
C6—H6B0.9700
C6—S1—C8105.25 (15)C3—C7—H7C109.5
C2—C1—C2i119.9 (4)H7A—C7—H7C109.5
C2—C1—C5120.0 (2)H7B—C7—H7C109.5
C2i—C1—C5120.0 (2)C9—C8—C10110.4 (3)
C3—C2—C1120.1 (3)C9—C8—C11110.1 (3)
C3—C2—C6119.5 (3)C10—C8—C11110.2 (3)
C1—C2—C6120.4 (3)C9—C8—S1111.5 (3)
C4—C3—C2118.2 (3)C10—C8—S1109.4 (2)
C4—C3—C7118.7 (3)C11—C8—S1105.1 (2)
C2—C3—C7123.1 (3)C8—C9—H9A109.5
C3i—C4—C3123.3 (4)C8—C9—H9B109.5
C3i—C4—H4118.3H9A—C9—H9B109.5
C3—C4—H4118.3C8—C9—H9C109.5
C1—C5—H5A109.5H9A—C9—H9C109.5
C1—C5—H5B109.5H9B—C9—H9C109.5
H5A—C5—H5B109.5C8—C10—H10A109.5
C1—C5—H5C109.5C8—C10—H10B109.5
H5A—C5—H5C109.5H10A—C10—H10B109.5
H5B—C5—H5C109.5C8—C10—H10C109.5
C2—C6—S1110.1 (2)H10A—C10—H10C109.5
C2—C6—H6A109.6H10B—C10—H10C109.5
S1—C6—H6A109.6C8—C11—H11A109.5
C2—C6—H6B109.6C8—C11—H11B109.5
S1—C6—H6B109.6H11A—C11—H11B109.5
H6A—C6—H6B108.2C8—C11—H11C109.5
C3—C7—H7A109.5H11A—C11—H11C109.5
C3—C7—H7B109.5H11B—C11—H11C109.5
H7A—C7—H7B109.5
C2i—C1—C2—C32.1 (2)C2—C3—C4—C3i2.0 (2)
C5—C1—C2—C3177.9 (2)C7—C3—C4—C3i177.4 (3)
C2i—C1—C2—C6178.1 (3)C3—C2—C6—S1101.5 (3)
C5—C1—C2—C61.9 (3)C1—C2—C6—S178.3 (3)
C1—C2—C3—C44.1 (4)C8—S1—C6—C2156.2 (2)
C6—C2—C3—C4176.1 (2)C6—S1—C8—C949.3 (3)
C1—C2—C3—C7175.3 (2)C6—S1—C8—C1073.2 (3)
C6—C2—C3—C74.5 (5)C6—S1—C8—C11168.5 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···S1ii0.963.113.980 (5)151
Symmetry code: (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC19H32S2
Mr324.57
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)14.870 (4), 14.233 (3), 9.245 (2)
β (°) 103.693 (4)
V3)1901.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.34 × 0.09 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10088, 1743, 1022
Rint0.084
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.143, 0.93
No. of reflections1743
No. of parameters102
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.15

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 2012), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···S1i0.963.113.980 (5)151
Symmetry code: (i) x, y+1, z1/2.
 

Acknowledgements

EP-M and RR-M (postdoctoral agreements No. 290662 and 290586 UNAM) would like to thank CONACYT for scholarships. The financial support of this research by CONACYT (CB2010–154732) and DGAPA-UNAM (IN201711) is gratefully acknowledged. JMG-A would like to thank the Universidad Autónoma Metropolitana, Unidad Lerma, for financial support. DM-M acknowledges Dr Simón Hernández-Ortega for technical assistance.

References

First citationBruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorales-Morales, D. (2004). Rev. Soc. Quim. Mex. 48, 338–346.  CAS Google Scholar
First citationMorales-Morales, D. & Jensen, C. M. (2007). Editors. The Chemistry of Pincer Compounds. Amsterdam: Elsevier.  Google Scholar
First citationPadilla-Mata, E., German-Acacio, J. M., García-Eleno, M. A., Reyes-Martínez, R. & Morales-Morales, D. (2012). Acta Cryst. E68, o1429.  CSD CrossRef IUCr Journals Google Scholar
First citationSerrano-Becerra, J. M. & Morales-Morales, D. (2009). Curr. Org. Synth. 6, 169–192.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingleton, J. T. (2003). Tetrahedron, 59, 1837–1857.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds