supplementary materials


hg5281 scheme

Acta Cryst. (2013). E69, m117-m118    [ doi:10.1107/S160053681300130X ]

cis-Dichlorido(dimethyl sulfoxide-[kappa]S)(N,N,N',N'-tetramethylguanidine-[kappa]N'')platinum(II)

I. I. Eliseev, N. A. Bokach, M. Haukka and I. A. Golenya

Abstract top

In the title compound, cis-[PtCl2(C5H13N3)(C2H6OS)], the four-coordinate PtII atom is bonded to one N atom of the N,N,N',N'-tetramethylguanidine ligand, one dimethyl sulfoxide S atom and two chloride ligands, forming a cis-square-planar geometry. The bond lengths and angles of the N-Pt-Cl functionality are typical for imine dichloridoplatinum(II) complexes. The H atom of the imino group is oriented towards the O atom of the sulfoxide group of a neighboring molecule and forms an N-H...O hydrogen bond.

Comment top

As a part of our ongoing investigations on structural features of platinum complexes with guanidines (Gushchin et al., 2007; Gushchin et al., 2008) a new compound, (I), having PtII-bound N,N,N',N'-tetramethylguanidine, has been prepared and herein we report its X-ray crystal and molecular structures.

In the compound, the four-coordinate Pt atom has a distorted cis-square planar geometry where the Pt atom is bonded by one N atom of the N,N,N',N'-tetramethylguanidine ligand and one S atom of the dimethyl sulfoxide and two chlorides in the cis-position (Fig. 1 and Table 1). The values of the Pt–Cl bond distances (2.3214 (13) and 2.327 (2) Å) agree well with those of previously characterized platinum(II) chloride compounds (Makarycheva-Mikhailova et al., 2003; Gonzalez et al., 2002). The Pt–N bonds [2.013 (4) Å for Pt–Nimine] are in accord with those found in cis-/trans-[Pt(NH3)2{NH=C(NH2)NMe2}] (2.031 (9)/2.020 (3) Å), (Tyan et al., 2008), [Pt{NH=C(NH2)NMe2}(dien)][SO3CF3]2 (2.018 (7) Å), (Fairlie et al., 1997) and [PtCl4{NH=C(NMe2)OC(NMe2)=NH}] (2.015 (5) Å) (Bokach et al., 2003).

The C=N bond length (C(1)–N(1) 1.316 (6) Å) is equal, within 3σ, to the average C=N double bond distance (1.31 Å) obtained from the Cambridge Crystal Structural Database (Version 5.27; Allen, 2002). The bond lengths C(1)–N(2) and C(1)–N(3) [1.342 (7) and 1.352 (6) Å, respectively] have values closer to a typical C–N single bond [Nsp2–Csp2 in amides 1.346 (11) Å] (Allen, 1987). In addition, the C=N bond length (1.316 (6) Å) and the C–N bonds lengths (C(1)–N(2) 1.342 (7), C(1)–N(3) 1.352 (6) Å) exhibit values typical, within 3σ, for the (amidine)2PtII complexes, viz. [Pt{NH=C(NH2)NMe2}(dien)]2+, (1.31 (1), 1.394 (8) and 1.33 (1) Å) (Fairlie et al., 1997), and cis-/trans-[Pt(NH3)2{NH=C(NH2)NMe2}] (1.284 (14)/1.288 (5), 1.364 (14)/1.352 (5) and 1.364 (14)/1.341 (5) Å), (Tyan et al., 2008). The H atom of the imino function is oriented towards the O atom of the sulfoxide group of the neighboring molecule forming the intermolecular hydrogen bond (Figure 2, Table 2).

Related literature top

For guanidines serving as nucleophiles towards metal-activated nitriles at PtII and PtIV atoms, see: Gushchin et al. (2007, 2008); Tyan et al. (2008). For related structures, see: Bokach et al. (2003); Fairlie et al. (1997); Gonzalez et al. (2002); Makarycheva-Mikhailova et al. (2003). For a description of the Cambridge Structural Database, see; Allen (2002). For standard bond lengths, see: Allen et al. (1987).

Experimental top

N,N,N',N'-Tetramethylguanidine (13.8 g, 0.12 mmol) was added to K[PtCl3(DMSO)] (50.0 mg, 0.12 mmol) in water (1 mL) and the reaction mixture was kept at room temperature for 2 h. The yellow crystalline precipitate were mechanically separated and subjected to the X-ray study. IR (KBr, selected bands, cm–1): 3008 (m, N–H), 1616 (s, C=N), 1134 (s, S=O); 1H NMR (CDCl3, δ, p.p.m.): 4.40 (s, br, 1H, =NH), 3,40 (s, 6H, Me2SO), 3.00 (s, br, 12H, Me2N–); Analyses calculated for C7H19N3Cl2OPtS: C 18.31, H 4.17, N 9.15%; found: C 18.05, H 4.15, N 8.59%.

Refinement top

The NH hydrogen atoms was located from the difference Fourier map but constrained to ride on it's parent atom, with Uiso = 1.5 Ueq(parent atom). Other hydrogen atoms were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.98 Å, and Uiso = 1.5 Ueq(parent atom). The highest peak is located 1.49 Å from atom H4B and the deepest hole is located 0.87 Å from atom Pt1.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular structure of (I), showing the intermolecular hydrogen bond.
cis-Dichlorido(dimethyl sulfoxide-κS)(N,N,N',N'- tetramethylguanidine)platinum(II) top
Crystal data top
[PtCl2(C5H13N3)(C2H6OS)]F(000) = 872
Mr = 459.30Dx = 2.076 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 6239 reflections
a = 10.1577 (5) Åθ = 1.0–27.5°
b = 19.1711 (8) ŵ = 10.04 mm1
c = 8.6536 (3) ÅT = 120 K
β = 119.304 (2)°Block, pale yellow
V = 1469.51 (11) Å30.24 × 0.13 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3280 independent reflections
Radiation source: fine-focus sealed tube3044 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.041
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.4°
φ scans and ω scans with κ offseth = 1313
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 2424
Tmin = 0.151, Tmax = 0.299l = 1111
12560 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
3280 reflectionsΔρmax = 1.49 e Å3
142 parametersΔρmin = 1.64 e Å3
2 restraintsAbsolute structure: Flack (1983), 1598 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.008 (6)
Crystal data top
[PtCl2(C5H13N3)(C2H6OS)]V = 1469.51 (11) Å3
Mr = 459.30Z = 4
Monoclinic, CcMo Kα radiation
a = 10.1577 (5) ŵ = 10.04 mm1
b = 19.1711 (8) ÅT = 120 K
c = 8.6536 (3) Å0.24 × 0.13 × 0.12 mm
β = 119.304 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3280 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
3044 reflections with I > 2σ(I)
Tmin = 0.151, Tmax = 0.299Rint = 0.041
12560 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.045Δρmax = 1.49 e Å3
S = 1.03Δρmin = 1.64 e Å3
3280 reflectionsAbsolute structure: Flack (1983), 1598 Friedel pairs
142 parametersFlack parameter: 0.008 (6)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.96648 (6)0.110788 (7)1.03671 (6)0.01299 (6)
Cl11.20421 (15)0.15985 (7)1.14273 (16)0.0221 (3)
Cl20.9945 (3)0.11372 (8)1.3201 (3)0.0229 (6)
S10.9352 (2)0.10943 (7)0.7678 (3)0.0133 (5)
O10.7956 (4)0.07948 (18)0.6268 (4)0.0197 (7)
N10.7691 (5)0.0608 (2)0.9550 (5)0.0172 (9)
H1N0.77660.01720.97920.026*
N20.5880 (5)0.1425 (2)0.7857 (6)0.0201 (9)
N30.5363 (5)0.0249 (2)0.7283 (5)0.0170 (9)
C10.6341 (6)0.0760 (3)0.8237 (6)0.0162 (10)
C20.6478 (7)0.1974 (3)0.9182 (7)0.0281 (12)
H2A0.68750.17691.03650.042*
H2B0.56710.23050.89720.042*
H2C0.72910.22180.91050.042*
C30.4915 (7)0.1652 (3)0.6032 (7)0.0329 (13)
H3A0.48580.12810.52200.049*
H3B0.53400.20740.58070.049*
H3C0.39010.17520.58430.049*
C40.5856 (6)0.0446 (2)0.7127 (6)0.0201 (11)
H4A0.69240.04320.74460.030*
H4B0.52530.06100.59040.030*
H4C0.57230.07640.79260.030*
C50.3737 (6)0.0318 (3)0.6638 (8)0.0300 (13)
H5A0.35460.07490.71050.045*
H5B0.33840.00820.70390.045*
H5C0.31970.03340.53400.045*
C60.9526 (7)0.1948 (3)0.7012 (7)0.0250 (12)
H6A0.95260.19260.58800.038*
H6B1.04730.21570.79140.038*
H6C0.86740.22340.68720.038*
C71.0888 (6)0.0668 (3)0.7656 (6)0.0189 (11)
H7A1.08860.01740.79430.028*
H7B1.18360.08840.85370.028*
H7C1.07910.07110.64770.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01236 (9)0.01404 (8)0.01011 (8)0.00112 (17)0.00359 (6)0.00035 (14)
Cl10.0163 (6)0.0239 (6)0.0214 (6)0.0052 (5)0.0056 (5)0.0047 (5)
Cl20.0297 (13)0.0281 (12)0.0108 (10)0.0039 (8)0.0099 (9)0.0004 (6)
S10.0130 (10)0.0138 (10)0.0105 (9)0.0002 (6)0.0037 (8)0.0016 (6)
O10.018 (2)0.0257 (19)0.0129 (17)0.0000 (15)0.0058 (15)0.0009 (14)
N10.021 (2)0.016 (2)0.013 (2)0.0045 (17)0.0072 (18)0.0003 (16)
N20.016 (2)0.018 (2)0.022 (2)0.0048 (18)0.0057 (19)0.0029 (18)
N30.010 (2)0.019 (2)0.020 (2)0.0008 (17)0.0053 (18)0.0029 (17)
C10.013 (3)0.022 (3)0.016 (2)0.001 (2)0.009 (2)0.002 (2)
C20.027 (3)0.021 (3)0.030 (3)0.005 (2)0.008 (3)0.002 (2)
C30.026 (3)0.029 (3)0.026 (3)0.002 (3)0.001 (3)0.006 (2)
C40.019 (3)0.019 (3)0.017 (2)0.000 (2)0.006 (2)0.006 (2)
C50.014 (3)0.032 (3)0.044 (4)0.003 (2)0.014 (3)0.010 (3)
C60.029 (3)0.021 (3)0.021 (3)0.001 (2)0.009 (2)0.005 (2)
C70.016 (3)0.019 (3)0.017 (2)0.004 (2)0.004 (2)0.002 (2)
Geometric parameters (Å, º) top
Pt1—N12.013 (4)C2—H2C0.9800
Pt1—S12.189 (2)C3—H3A0.9800
Pt1—Cl12.3214 (13)C3—H3B0.9800
Pt1—Cl22.327 (2)C3—H3C0.9800
S1—O11.462 (4)C4—H4A0.9800
S1—C71.769 (5)C4—H4B0.9800
S1—C61.773 (5)C4—H4C0.9800
N1—C11.316 (6)C5—H5A0.9800
N1—H1N0.8556C5—H5B0.9800
N2—C11.342 (7)C5—H5C0.9800
N2—C21.452 (7)C6—H6A0.9800
N2—C31.459 (7)C6—H6B0.9800
N3—C11.352 (6)C6—H6C0.9800
N3—C41.451 (6)C7—H7A0.9800
N3—C51.467 (6)C7—H7B0.9800
C2—H2A0.9800C7—H7C0.9800
C2—H2B0.9800
N1—Pt1—S191.13 (12)N2—C3—H3A109.5
N1—Pt1—Cl1175.21 (12)N2—C3—H3B109.5
S1—Pt1—Cl190.38 (7)H3A—C3—H3B109.5
N1—Pt1—Cl288.20 (12)N2—C3—H3C109.5
S1—Pt1—Cl2178.66 (11)H3A—C3—H3C109.5
Cl1—Pt1—Cl290.38 (7)H3B—C3—H3C109.5
O1—S1—C7108.1 (2)N3—C4—H4A109.5
O1—S1—C6107.6 (3)N3—C4—H4B109.5
C7—S1—C6101.2 (3)H4A—C4—H4B109.5
O1—S1—Pt1117.94 (19)N3—C4—H4C109.5
C7—S1—Pt1110.29 (19)H4A—C4—H4C109.5
C6—S1—Pt1110.4 (2)H4B—C4—H4C109.5
C1—N1—Pt1129.5 (3)N3—C5—H5A109.5
C1—N1—H1N111.0N3—C5—H5B109.5
Pt1—N1—H1N115.1H5A—C5—H5B109.5
C1—N2—C2122.2 (4)N3—C5—H5C109.5
C1—N2—C3121.1 (4)H5A—C5—H5C109.5
C2—N2—C3116.1 (4)H5B—C5—H5C109.5
C1—N3—C4122.5 (4)S1—C6—H6A109.5
C1—N3—C5121.4 (4)S1—C6—H6B109.5
C4—N3—C5115.0 (4)H6A—C6—H6B109.5
N1—C1—N2120.9 (5)S1—C6—H6C109.5
N1—C1—N3120.7 (4)H6A—C6—H6C109.5
N2—C1—N3118.4 (4)H6B—C6—H6C109.5
N2—C2—H2A109.5S1—C7—H7A109.5
N2—C2—H2B109.5S1—C7—H7B109.5
H2A—C2—H2B109.5H7A—C7—H7B109.5
N2—C2—H2C109.5S1—C7—H7C109.5
H2A—C2—H2C109.5H7A—C7—H7C109.5
H2B—C2—H2C109.5H7B—C7—H7C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.213.021 (5)159
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.213.021 (5)159.2
Symmetry code: (i) x, y, z+1/2.
Acknowledgements top

This work was supported by the State Fund for Fundamental Research of Ukraine (grant No. 11–03–90417), the Russian Foundation for Basic Research (grant Nos. 11-03-00483, 12-03-33071 and 12-03-31040), Saint Petersburg State University (for a research grant 2011–2013; 12.37.133.2011 and a grant for applied research 2012–2013; 12.39.1050.2012). Financial support from the State Fund for Fundamental Researches of Ukraine (grant No. GP/F36/032) is also gratefully acknowledged.

references
References top

Allen, F. H. (2002). Acta Cryst. B58, 380–388.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bokach, N. A., Pakhomova, T. B., Kukushkin, V. Yu., Haukka, M. & Pombeiro, A. J. L. (2003). Inorg. Chem. 42, 7560–7568.

Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Fairlie, D. P., Jackson, W. G., Skelton, B. W., Wen, H., White, A. H., Wickramasinghe, W. A., Woon, T. C. & Taube, H. (1997). Inorg. Chem. 36, 1020–1026.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Gonzalez, A. M., Cini, R., Intini, F. P., Pacifico, C. & Natile, G. (2002). Inorg. Chem. 41, 470–479.

Gushchin, P. V., Bokach, N. A., Luzyanin, K. V., Nazarov, A. A., Haukka, M. & Kukushkin, V. Yu. (2007). Inorg. Chem. 46, 1684–1693.

Gushchin, P. V., Tyan, M. R., Bokach, N. A., Revenco, M. D., Haukka, M., Wang, M.-J., Lai, C.-H., Chou, P.-T. & Kukushkin, V. Yu. (2008). Inorg. Chem. 47, 11487–11500.

Makarycheva-Mikhailova, A. V., Bokach, N. A., Kukushkin, V. Yu., Kelly, P. F., Gilby, L. M., Kuznetsov, M. L., Holmes, K. E., Haukka, M., Parr, J., Stonehouse, J. M., Elsegood, M. R. J. & Pombeiro, A. J. L. (2003). Inorg. Chem. 42, 301–309.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tyan, M. R., Bokach, N. A., Wang, M.-J., Haukka, M., Kuznetsov, M. L. & Kukushkin, V. Yu. (2008). Dalton Trans. pp. 5178–5188.