supplementary materials


hy2613 scheme

Acta Cryst. (2013). E69, m105    [ doi:10.1107/S1600536813000871 ]

trans-Dibromidotetrakis(pyridine-[kappa]N)ruthenium(II)

X.-L. Wu, R.-F. Ye, A.-Q. Jia, Q. Chen and Q.-F. Zhang

Abstract top

The title complex, [RuBr2(C5H5N)4], contains two independent complex molecules in each of which the RuII atom is located on a site of 222 symmetry and has a distorted octahedral coordination geometry with four pyridine N atoms and two Br atoms. The Br aroms are trans-disposed as a result of symmetry.

Comment top

Coordination chemistry of ruthenium complexes has been studied in last few decades because of their versatile and diverse applications in molecular catalysis (Pagliaro et al., 2005) and bioinorganic chemistry (van Rijt & Sadler, 2009). As part of our long-standing interest in the ruthenium complexes with σ-donor ligands such as thiolate, pyridine and phosphine (Zhang et al., 2005), we have investigated the reactivity of the starting ruthenium compounds such as RuCl2(PPh3)3, RuHCl(CO)(PPh3)3 and RuCl2(dmso)4 (dmso = dimethyl sulfoxide) with mono-, bi- and poly-dentate ligands (Wu et al., 2009). Here we report the crystal structure of the mononuclear ruthenium(II) complex.

In the title complex, there are two independent complex molecules with a perpendicular arrangement. Each RuII atom is located on a 222 symmetry. No significant differences in bonding parameters between these two molecules are found. One of the molecular structures is depicted in Fig. 1. The coordination geometry of the RuII atom is octahedral with four pyridine N atoms and two Br atoms. The Ru—N bond lengths (Table 1) are in the range of those found in related structures of ruthenium(II) complexes retrieved from the Cambridge Structural Database (Allen, 2002). The Ru—Br bond lengths are comparable to those reported in other ruthenium(II)-bromide complexes such as [Ru2Br2(pz)(py)8][PF6]2.2DMF (pz = pyrazine, py = pyridine) [av. 2.5524 (4) Å] (Mirza et al., 2003) and trans-[RuBr(py)4C(CN)3] [2.5453 (12) Å] (Zhang et al., 2006). Two Br atoms are trans disposed as indicated by the Br—Ru—Br bond angle of 180°, as a result of symmetry requirements. Similar case was found in analogous complex trans-[RuCl2(py)4] (Wong & Lau, 1994).

Related literature top

For background to ruthenium complexes: see: Pagliaro et al. (2005); van Rijt & Sadler (2009); Wu et al. (2009); Zhang et al. (2005). For related structures, see: Mirza et al. (2003); Wong & Lau (1994); Zhang et al. (2006). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

To a THF solution (10 ml) of RuCl2(DMSO)4 (97 mg, 0.2 mmol) was added pyridine (63 mg, 0.8 mmol) and Br2 (32 mg, 0.2 mmol) under a nitrogen atmosphere. The reaction mixture was refluxed for 2 h, developing red. The solvent was evaporated in vacuo and the residue was washed with hexane. Recrystallization from CH2Cl2/hexane afforded red crystals of the title complex within two days (yield: 75 mg, 65 % based on Ru). Analysis, calculated for C20H20Br2N4Ru: C 41.61, H 3.49, N 9.70%; found: C 41.53, H 3.44, N 9.63%.

Refinement top

H atoms were placed in geometrically idealized positions and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing one of the two independent molecules. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (A) x, 1/4-y, 1/4-z; (B) 1/4-x, y, 1/4-z; (C) 1/4-x, 1/4-y, z.]
[Figure 2] Fig. 2. Packing diagram of the title compound in a unit cell, viewed along the c axis.
trans-Dibromidotetrakis(pyridine-κN)ruthenium(II) top
Crystal data top
[RuBr2(C5H5N)4]F(000) = 4512
Mr = 577.29Dx = 1.781 Mg m3
Orthorhombic, FdddMo Kα radiation, λ = 0.71073 Å
Hall symbol: -F 2uv 2vwCell parameters from 2149 reflections
a = 16.830 (4) Åθ = 2.2–26.4°
b = 22.032 (5) ŵ = 4.45 mm1
c = 23.221 (5) ÅT = 296 K
V = 8610 (3) Å3Block, red
Z = 160.22 × 0.18 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
2430 independent reflections
Radiation source: fine-focus sealed tube1631 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2121
Tmin = 0.441, Tmax = 0.595k = 2828
13382 measured reflectionsl = 2926
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0292P)2 + 11.6805P]
where P = (Fo2 + 2Fc2)/3
2430 reflections(Δ/σ)max < 0.001
125 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[RuBr2(C5H5N)4]V = 8610 (3) Å3
Mr = 577.29Z = 16
Orthorhombic, FdddMo Kα radiation
a = 16.830 (4) ŵ = 4.45 mm1
b = 22.032 (5) ÅT = 296 K
c = 23.221 (5) Å0.22 × 0.18 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
2430 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1631 reflections with I > 2σ(I)
Tmin = 0.441, Tmax = 0.595Rint = 0.034
13382 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0292P)2 + 11.6805P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069Δρmax = 0.58 e Å3
S = 1.04Δρmin = 0.34 e Å3
2430 reflectionsAbsolute structure: ?
125 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
H-atom parameters constrained
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.12500.12500.12500.03562 (11)
Ru20.62500.12500.12500.03634 (11)
Br10.12500.009537 (19)0.12500.05758 (14)
Br20.62500.12500.015713 (18)0.06143 (15)
N10.03782 (12)0.12460 (9)0.18885 (9)0.0409 (5)
N20.71241 (13)0.19195 (10)0.12552 (9)0.0428 (5)
C10.02375 (16)0.08600 (14)0.18763 (12)0.0513 (7)
H10.02800.05940.15670.062*
C20.08052 (18)0.08388 (16)0.22953 (14)0.0643 (9)
H20.12230.05640.22680.077*
C30.0757 (2)0.12230 (16)0.27562 (15)0.0664 (9)
H30.11370.12160.30470.080*
C40.01284 (18)0.16198 (15)0.27768 (13)0.0565 (8)
H40.00770.18870.30840.068*
C50.04201 (16)0.16198 (13)0.23442 (11)0.0463 (6)
H50.08420.18910.23660.056*
C60.77437 (16)0.19016 (13)0.16161 (13)0.0513 (7)
H60.77830.15770.18700.062*
C70.83202 (18)0.23371 (16)0.16297 (15)0.0655 (9)
H70.87400.23040.18880.079*
C80.8280 (2)0.28178 (15)0.12661 (16)0.0721 (10)
H80.86700.31170.12690.086*
C90.76494 (19)0.28493 (15)0.08948 (16)0.0656 (9)
H90.76010.31750.06420.079*
C100.70898 (16)0.23981 (13)0.08982 (13)0.0509 (7)
H100.66670.24240.06420.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0287 (2)0.0399 (2)0.0383 (2)0.0000.0000.000
Ru20.0285 (2)0.0431 (2)0.0374 (2)0.0000.0000.000
Br10.0600 (3)0.0459 (2)0.0668 (3)0.0000.0158 (2)0.000
Br20.0616 (3)0.0806 (3)0.0421 (2)0.0070 (2)0.0000.000
N10.0331 (11)0.0465 (12)0.0430 (12)0.0042 (10)0.0006 (9)0.0007 (10)
N20.0326 (11)0.0461 (12)0.0497 (13)0.0005 (9)0.0006 (10)0.0022 (11)
C10.0398 (15)0.0614 (18)0.0526 (17)0.0119 (14)0.0014 (13)0.0002 (14)
C20.0449 (18)0.081 (2)0.067 (2)0.0174 (16)0.0047 (15)0.0060 (18)
C30.0495 (18)0.091 (2)0.0590 (19)0.0018 (18)0.0172 (15)0.0106 (18)
C40.0482 (17)0.072 (2)0.0490 (17)0.0020 (15)0.0079 (13)0.0041 (15)
C50.0392 (15)0.0486 (16)0.0512 (17)0.0019 (12)0.0030 (12)0.0028 (13)
C60.0382 (15)0.0530 (17)0.0627 (19)0.0023 (13)0.0086 (14)0.0006 (14)
C70.0407 (17)0.068 (2)0.088 (2)0.0039 (15)0.0146 (17)0.0092 (18)
C80.0504 (19)0.053 (2)0.112 (3)0.0150 (15)0.001 (2)0.004 (2)
C90.0528 (19)0.056 (2)0.088 (2)0.0023 (15)0.0069 (18)0.0133 (18)
C100.0380 (15)0.0549 (18)0.0597 (18)0.0009 (13)0.0018 (13)0.0077 (14)
Geometric parameters (Å, º) top
Ru1—N1i2.086 (2)C1—H10.9300
Ru1—N1ii2.086 (2)C2—C31.367 (5)
Ru1—N12.086 (2)C2—H20.9300
Ru1—N1iii2.086 (2)C3—C41.373 (4)
Ru1—Br12.5439 (7)C3—H30.9300
Ru1—Br1ii2.5439 (7)C4—C51.364 (4)
Ru2—N2iv2.083 (2)C4—H40.9300
Ru2—N22.083 (2)C5—H50.9300
Ru2—N2i2.083 (2)C6—C71.365 (4)
Ru2—N2v2.083 (2)C6—H60.9300
Ru2—Br22.5378 (7)C7—C81.356 (5)
Ru2—Br2v2.5378 (7)C7—H70.9300
N1—C11.341 (3)C8—C91.370 (5)
N1—C51.343 (3)C8—H80.9300
N2—C61.339 (3)C9—C101.369 (4)
N2—C101.342 (3)C9—H90.9300
C1—C21.365 (4)C10—H100.9300
N1i—Ru1—N1ii179.52 (12)C6—N2—C10116.3 (2)
N1i—Ru1—N190.60 (12)C6—N2—Ru2122.20 (18)
N1ii—Ru1—N189.40 (12)C10—N2—Ru2121.48 (18)
N1i—Ru1—N1iii89.40 (12)N1—C1—C2123.2 (3)
N1ii—Ru1—N1iii90.60 (12)N1—C1—H1118.4
N1—Ru1—N1iii179.52 (12)C2—C1—H1118.4
N1i—Ru1—Br190.24 (6)C1—C2—C3119.7 (3)
N1ii—Ru1—Br190.24 (6)C1—C2—H2120.2
N1—Ru1—Br189.76 (6)C3—C2—H2120.2
N1iii—Ru1—Br189.76 (6)C2—C3—C4117.9 (3)
N1i—Ru1—Br1ii89.76 (6)C2—C3—H3121.1
N1ii—Ru1—Br1ii89.76 (6)C4—C3—H3121.1
N1—Ru1—Br1ii90.24 (6)C5—C4—C3119.7 (3)
N1iii—Ru1—Br1ii90.24 (6)C5—C4—H4120.2
Br1—Ru1—Br1ii180.0C3—C4—H4120.2
N2iv—Ru2—N2179.34 (11)N1—C5—C4123.0 (3)
N2iv—Ru2—N2i89.84 (12)N1—C5—H5118.5
N2—Ru2—N2i90.16 (12)C4—C5—H5118.5
N2iv—Ru2—N2v90.16 (12)N2—C6—C7123.2 (3)
N2—Ru2—N2v89.84 (12)N2—C6—H6118.4
N2i—Ru2—N2v179.34 (11)C7—C6—H6118.4
N2iv—Ru2—Br290.33 (6)C8—C7—C6120.0 (3)
N2—Ru2—Br290.33 (6)C8—C7—H7120.0
N2i—Ru2—Br289.67 (6)C6—C7—H7120.0
N2v—Ru2—Br289.67 (6)C7—C8—C9118.0 (3)
N2iv—Ru2—Br2v89.67 (6)C7—C8—H8121.0
N2—Ru2—Br2v89.67 (6)C9—C8—H8121.0
N2i—Ru2—Br2v90.33 (6)C10—C9—C8119.5 (3)
N2v—Ru2—Br2v90.33 (6)C10—C9—H9120.2
Br2—Ru2—Br2v180.0C8—C9—H9120.2
C1—N1—C5116.5 (2)N2—C10—C9123.0 (3)
C1—N1—Ru1122.09 (18)N2—C10—H10118.5
C5—N1—Ru1121.38 (17)C9—C10—H10118.5
Symmetry codes: (i) x, y+1/4, z+1/4; (ii) x+1/4, y+1/4, z; (iii) x+1/4, y, z+1/4; (iv) x+5/4, y+1/4, z; (v) x+5/4, y, z+1/4.
Selected bond lengths (Å) top
Ru1—N12.086 (2)Ru2—N22.083 (2)
Ru1—Br12.5439 (7)Ru2—Br22.5378 (7)
Acknowledgements top

This project was supported by the Natural Science Foundation of China (grant Nos. 20771003 and 21201003).

references
References top

Allen, F. H. (2002). Acta Cryst. B58, 380–388.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Mirza, H. A., Farah, A. A., Stynes, D. V. & Lever, A. B. P. (2003). Acta Cryst. E59, m679–m680.

Pagliaro, M., Campestrini, S. & Ciriminna, R. (2005). Chem. Soc. Rev. 34, 837–845.

Rijt, S. H. van & Sadler, P. J. (2009). Drug Discov. Today, 14, 1089–1097.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wong, W.-T. & Lau, T.-C. (1994). Acta Cryst. C50, 1406–1407.

Wu, F. H., Duan, T., Lu, L., Zhang, Q. F. & Leung, W. H. (2009). J. Organomet. Chem. 694, 3844–3851.

Zhang, Q. F., Cheung, K. M., Williams, I. D. & Leung, W. H. (2005). Eur. J. Inorg. Chem. pp. 4780–4787.

Zhang, L.-Y., Zhu, Y.-M., Shi, L.-X. & Chen, Z.-N. (2006). Chin. J. Inorg. Chem. 22, 1453–1466.