supplementary materials


kj2217 scheme

Acta Cryst. (2013). E69, m86    [ doi:10.1107/S1600536812051136 ]

Di-[mu]-chlorido-bis{[2-(di-tert-butylphosphanyl)biphenyl-3-yl-[kappa]2C3,P]palladium(II)} dichloromethane disolvate

C. W. Holzapfel and B. Omondi

Abstract top

The asymmetric unit of the title compound, [Pd2Cl2(C20H26P)2]·2CH2Cl2, contains one half-molecule of the palladium complex and a dichloromethane solvent molecule. In the complex, two PdII atoms are bridged by two Cl atoms, with the other two coordination sites occupied by a C atom of the biphenyl system and a P atom, resulting in a distorted square-planar coordination geometry of the PdII atom and a cyclometallated four-membered ring. The Pd2Cl2 unit is located about an inversion center. The planes of the rings of the biphenyl system make a dihedral angle of 66.36 (11)°.

Comment top

Palladacycles (Beletskaya & Cheprakov, 2004; Orlye & Jutland, 2005; Herrmann et al., 2003) appear as long-sought thermally stable and structurally defined catalysts for Heck, cross-coupling and for methoxycarbonylation of alkenes (Omondi et al., 2011, Williams et al., 2008). However, with the exception of 2-(2'-di-tert-butylphosphine)bipheryl palladium(II) acetate, shown in the Fluka and Aldrich catalogues, this complex and other four membered ring phospha-palladacycles (Garrou, 1981) have shown little success in this regard.

The title compound crystallizes as a dichloromethane solvate, with half a molecule of the complex in the asymmetric unit, in which the the two Pd centres are bridged by two chlorides and are part of a constrained four-membered ring along with two carbon atoms of a phenyl ring and a phosphorus atom (Fig. 1). The four-membered rings are trans across the planar Pd2Cl2 unit, the planar Pd2Cl2 unit being on the center of inversion at 1/2, 0, 0. The coordination around the palladium atom is distorted square planar, with the angles around the metal deviating significantly from orthogonallity yet very planar. The smallest of the angles around the metal centre is 68.84 (10)° and is similar to that previously reported dinuclear cyclopalladate, 68.89 (3)° (Christmann et al., 2006) and of related ortho-metallated Pd-structures from literature (Sole et al., 2004; Mohr et al., 2006; Bennett et al., 2010). The other angles around the Pd centers are 85.85 (11), 95.0 (2) and 106.44 (3)° all probably due to steric hindrance caused by tert-butyl groups. The Pd—C distance (1.978 (3) Å) is shorter than the Pd—P distance (2.2327 (9) Å) which is in good agreement with the Pd—P separation in similar four-membered compounds with a sp2-hybridized carbon. The carbon-phosphorus distance that is part of the constrained ring is significantly shorter [1.824 (3) Å] compared to the other two [1.860 (3) and 1.879 (4) Å] as observed in most cyclopalladates. The planes of the phenyl rings of the biphenyl moiety have a dihedral angle of 66.36 (11)°.

Related literature top

For background to palladacycles, see: Beletskaya & Cheprakov (2004); Orlye & Jutland, (2005); Herrmann et al. (2003). For their applications as catalysts for methoxycarnylation, see: Omondi et al. (2011); Williams et al. (2008). For related ortho-metallated Pd structures, see: Sole et al. (2004); Mohr et al. (2006); Bennett et al. (2010); Christmann et al. (2006); Garrou et al. (1981).

Experimental top

(2-Biphenyl)-di-tert-butylphosphine (597 mg, 2 mmol) was added to the solution of lithium chloride (170 mg, 4 mmol) and palladium chloride (355 mg, 2 mmol) in 2:1 methanol-dichloromethane (15 ml) under argon. The mixture was heated under reflux under argon for 1 h. The solvent was evaporated in vacuo. To the residue was added dichloromethane (15 ml) and water (10 ml) and the mixture stirred for 30 minutes. The organic phase was separated, dried (anhydrous sodium sulfate) and the solvent evaporated to leave a residue (823 mg) which was chromographed over silica gel (Davisil, 20 g) using 5% methanol in dichloromethane as mobile phase. The eluent (120 ml) was evaporated to leave 1 as a colourless crystalline mass (676 mg, 82%). Good quality crystals (m.p. 162–165 °C, decomp) were obtained by diffusion of the vapours of ether into a solution of the title compound in dichloromethane at room temperature.

1H NMR (300 MHz, CDCl3): δ = 1.37 (d, JPH = 1.3 Hz, 36H, C(CH3)3), 7.05 (d, J = 3.2 Hz, 2H), 7.25 (dd, J = 7.5 and 3.2 Hz, 2H), 7.30–7.50 (m, 8H), 7.58 (t, J = 7.5 Hz, 2H), 7.85 (t, J = 7.5 Hz, 2H);

13C{1H} NMR (75 Mz, CDCl3): δ = 30.37 (d, JPC = 5 Hz, C(CH3)3), 35.97 (d, JPC = 12 Hz, C(CH3)3), 127.44 (d, JPC = 8.5 Hz, C-aromatic), 127.78 (s, C-aromatic), 127.44 (d, JPC = 8.5 Hz, C-aromatic), 127.78 (s, C-aromatic), 128.18 (s, C-aromatic), 129.19 (s, C-aromatic), 129.28 (s, C-aromatic), 133.55 (d, JPC = 26.0 Hz, C– aromatic), 138.55 (d, JPC = 32.0, C-aromatic), 141.90 (d, JPC = 3.9 Hz, C-aromatic), 142.81 (s, C– aromatic);

31P{1H} (97 MHz, CDCl3): δ = -17.80.

The title compound was also obtained in essentially quantitative yield by reacting the above phosphine with an equimolar amount of (cis, cis-1,5-cyclooctadiene) palladium (ll)-chloride in dichloromethane under reflux (1 hr) or at room temperature (18 hrs).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.98 Å for Me H atoms, 0.99 Å for Methylene H atoms and 0.95 Å for aromatic H atoms; Uiso(H) = 1.2Ueq(C) (1.5 for Me groups)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-numbering scheme for (I), with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms have been omited for clarity. The assymetric unit only has only half a molecule of the palladium complex, the other half generated by the symetry operator -x, -y, -z.
Di-µ-chlorido-bis{[2-(di-tert-butylphosphanyl)biphenyl-3-yl- κ2C3,P]palladium(II)} dichloromethane disolvate top
Crystal data top
[Pd2Cl2(C20H26P)2]·2CH2Cl2Z = 1
Mr = 1048.31F(000) = 532
Triclinic, P1Dx = 1.561 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4741 (15) ÅCell parameters from 15104 reflections
b = 10.1805 (15) Åθ = 1.8–28.3°
c = 12.0677 (18) ŵ = 1.27 mm1
α = 103.250 (4)°T = 100 K
β = 95.443 (3)°Block, yellow
γ = 97.080 (3)°0.08 × 0.07 × 0.02 mm
V = 1115.2 (3) Å3
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
4344 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.905, Tmax = 0.975k = 1313
15104 measured reflectionsl = 1516
5515 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0476P)2]
where P = (Fo2 + 2Fc2)/3
5515 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 1.16 e Å3
1 restraintΔρmin = 1.09 e Å3
Crystal data top
[Pd2Cl2(C20H26P)2]·2CH2Cl2γ = 97.080 (3)°
Mr = 1048.31V = 1115.2 (3) Å3
Triclinic, P1Z = 1
a = 9.4741 (15) ÅMo Kα radiation
b = 10.1805 (15) ŵ = 1.27 mm1
c = 12.0677 (18) ÅT = 100 K
α = 103.250 (4)°0.08 × 0.07 × 0.02 mm
β = 95.443 (3)°
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
5515 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4344 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.975Rint = 0.049
15104 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.094Δρmax = 1.16 e Å3
S = 1.01Δρmin = 1.09 e Å3
5515 reflectionsAbsolute structure: ?
241 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. >>> The Following ALERTS were generated <<< Format: alert-number_ALERT_alert-type_alert-level text 232_ALERT_2_C Hirshfeld Test Diff (M—X) Pd1 – Cl1.. 5.30 su Apllying DELU restraints does not remove this alert. 250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor ···. 2.23 Visual inspections of ellipsoids show no abnormalities. R = 3.8%. 911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 3 912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 62 Noted, no measures taken

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4506 (3)0.2051 (4)0.3645 (3)0.0143 (7)
C20.5538 (3)0.1684 (4)0.2933 (3)0.0144 (7)
C30.6977 (3)0.1820 (4)0.3385 (3)0.0178 (7)
H30.76870.15780.29020.021*
C40.7336 (3)0.2319 (4)0.4564 (3)0.0189 (7)
H40.8310.24370.48890.023*
C50.6289 (3)0.2652 (4)0.5278 (3)0.0178 (7)
H50.65660.29750.60820.021*
C60.4844 (3)0.2521 (3)0.4840 (3)0.0133 (7)
C70.3771 (3)0.2810 (4)0.5662 (3)0.0161 (7)
C80.3568 (4)0.1982 (4)0.6430 (3)0.0198 (8)
H80.41050.12510.64170.024*
C90.2587 (4)0.2219 (4)0.7209 (3)0.0245 (8)
H90.24570.16560.7730.029*
C100.1794 (4)0.3281 (4)0.7226 (3)0.0288 (9)
H100.10980.34260.77410.035*
C110.2018 (4)0.4135 (4)0.6489 (3)0.0259 (9)
H110.14950.48780.65170.031*
C120.3009 (4)0.3899 (4)0.5708 (3)0.0201 (8)
H120.31640.44840.52070.024*
C130.1586 (3)0.0291 (4)0.2698 (3)0.0161 (7)
C140.2346 (4)0.0917 (4)0.2839 (3)0.0221 (8)
H14A0.30690.06280.35180.033*
H14B0.28120.12340.21560.033*
H14C0.16420.16610.29330.033*
C150.0822 (4)0.0747 (4)0.3750 (3)0.0215 (8)
H15A0.03480.15310.36740.032*
H15B0.15240.10080.44430.032*
H15C0.01040.00060.38090.032*
C160.0503 (4)0.0164 (4)0.1600 (3)0.0210 (8)
H16A0.01550.0970.16370.032*
H16B0.10180.03890.09310.032*
H16C0.00430.05770.15320.032*
C170.2358 (4)0.3161 (4)0.2158 (3)0.0178 (7)
C180.1118 (4)0.3638 (4)0.2795 (3)0.0239 (8)
H18A0.13770.37550.36220.036*
H18B0.02580.29540.25270.036*
H18C0.09270.4510.26450.036*
C190.1888 (4)0.2829 (4)0.0851 (3)0.0217 (8)
H19A0.10820.2080.06410.033*
H19B0.26920.25570.04420.033*
H19C0.15930.36380.06410.033*
C200.3659 (4)0.4295 (4)0.2461 (3)0.0207 (8)
H20A0.34180.50830.21850.031*
H20B0.44690.39580.20950.031*
H20C0.39220.45680.32950.031*
C210.3306 (4)0.6222 (4)0.0511 (3)0.0265 (9)
H21A0.34510.68250.10410.032*
H21B0.34370.52920.09160.032*
Cl10.32540 (8)0.02556 (9)0.05326 (7)0.01603 (17)
Cl20.15439 (10)0.61906 (11)0.01468 (10)0.0332 (2)
Cl30.46013 (9)0.68133 (10)0.07196 (8)0.0267 (2)
P70.30128 (8)0.16081 (9)0.24901 (7)0.01217 (18)
Pd10.46067 (2)0.08342 (3)0.13497 (2)0.01217 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0082 (14)0.0204 (18)0.0149 (16)0.0042 (13)0.0005 (12)0.0051 (14)
C20.0097 (15)0.0189 (17)0.0145 (16)0.0039 (13)0.0009 (12)0.0040 (14)
C30.0091 (15)0.0250 (19)0.0186 (18)0.0056 (14)0.0036 (13)0.0016 (15)
C40.0058 (14)0.029 (2)0.0196 (18)0.0048 (14)0.0031 (13)0.0029 (16)
C50.0126 (16)0.0218 (18)0.0170 (17)0.0037 (14)0.0014 (13)0.0018 (15)
C60.0103 (15)0.0157 (17)0.0134 (16)0.0029 (13)0.0014 (12)0.0022 (13)
C70.0079 (14)0.0224 (18)0.0123 (16)0.0026 (13)0.0005 (12)0.0042 (14)
C80.0131 (16)0.027 (2)0.0156 (17)0.0011 (14)0.0021 (13)0.0022 (15)
C90.0169 (17)0.037 (2)0.0172 (18)0.0062 (16)0.0018 (14)0.0069 (17)
C100.0174 (18)0.040 (2)0.021 (2)0.0046 (17)0.0088 (15)0.0054 (18)
C110.0153 (17)0.027 (2)0.032 (2)0.0062 (15)0.0051 (15)0.0019 (18)
C120.0136 (16)0.025 (2)0.0191 (18)0.0023 (14)0.0015 (14)0.0012 (15)
C130.0090 (15)0.0232 (19)0.0148 (16)0.0007 (13)0.0006 (12)0.0036 (14)
C140.0157 (17)0.0221 (19)0.029 (2)0.0014 (15)0.0012 (15)0.0091 (16)
C150.0147 (16)0.032 (2)0.0166 (18)0.0025 (15)0.0038 (13)0.0055 (16)
C160.0121 (16)0.031 (2)0.0161 (17)0.0043 (15)0.0001 (13)0.0023 (16)
C170.0142 (16)0.0217 (18)0.0171 (17)0.0050 (14)0.0038 (13)0.0017 (15)
C180.0174 (17)0.029 (2)0.026 (2)0.0107 (16)0.0057 (15)0.0034 (17)
C190.0218 (18)0.028 (2)0.0159 (18)0.0101 (16)0.0006 (14)0.0053 (16)
C200.0211 (18)0.0208 (19)0.0203 (18)0.0043 (15)0.0045 (14)0.0039 (15)
C210.0205 (18)0.031 (2)0.027 (2)0.0032 (16)0.0027 (15)0.0062 (18)
Cl10.0066 (3)0.0255 (5)0.0139 (4)0.0042 (3)0.0010 (3)0.0001 (3)
Cl20.0144 (4)0.0346 (6)0.0501 (7)0.0044 (4)0.0032 (4)0.0093 (5)
Cl30.0176 (4)0.0300 (5)0.0311 (5)0.0015 (4)0.0002 (4)0.0073 (4)
P70.0049 (3)0.0191 (4)0.0116 (4)0.0028 (3)0.0008 (3)0.0014 (3)
Pd10.00434 (11)0.01965 (14)0.01151 (13)0.00282 (9)0.00054 (8)0.00138 (10)
Geometric parameters (Å, º) top
C1—C21.391 (5)C14—H14C0.98
C1—C61.403 (5)C15—H15A0.98
C1—P71.824 (3)C15—H15B0.98
C2—C31.398 (4)C15—H15C0.98
C2—Pd11.978 (3)C16—H16A0.98
C3—C41.389 (5)C16—H16B0.98
C3—H30.95C16—H16C0.98
C4—C51.397 (5)C17—C181.532 (5)
C4—H40.95C17—C201.535 (5)
C5—C61.399 (4)C17—C191.544 (5)
C5—H50.95C17—P71.879 (4)
C6—C71.495 (4)C18—H18A0.98
C7—C121.389 (5)C18—H18B0.98
C7—C81.400 (5)C18—H18C0.98
C8—C91.387 (5)C19—H19A0.98
C8—H80.95C19—H19B0.98
C9—C101.388 (6)C19—H19C0.98
C9—H90.95C20—H20A0.98
C10—C111.391 (6)C20—H20B0.98
C10—H100.95C20—H20C0.98
C11—C121.396 (5)C21—Cl21.764 (4)
C11—H110.95C21—Cl31.771 (4)
C12—H120.95C21—H21A0.99
C13—C151.529 (5)C21—H21B0.99
C13—C141.534 (5)Cl1—Pd1i2.4154 (8)
C13—C161.539 (4)Cl1—Pd12.4444 (9)
C13—P71.860 (3)P7—Pd12.2328 (9)
C14—H14A0.98Pd1—Cl1i2.4154 (8)
C14—H14B0.98
C2—C1—C6122.1 (3)H15A—C15—H15C109.5
C2—C1—P795.0 (2)H15B—C15—H15C109.5
C6—C1—P7142.8 (3)C13—C16—H16A109.5
C1—C2—C3120.7 (3)C13—C16—H16B109.5
C1—C2—Pd1109.9 (2)H16A—C16—H16B109.5
C3—C2—Pd1129.1 (3)C13—C16—H16C109.5
C4—C3—C2117.9 (3)H16A—C16—H16C109.5
C4—C3—H3121H16B—C16—H16C109.5
C2—C3—H3121C18—C17—C20110.1 (3)
C3—C4—C5121.1 (3)C18—C17—C19109.4 (3)
C3—C4—H4119.4C20—C17—C19108.6 (3)
C5—C4—H4119.4C18—C17—P7115.1 (3)
C4—C5—C6121.7 (3)C20—C17—P7106.2 (2)
C4—C5—H5119.1C19—C17—P7107.3 (2)
C6—C5—H5119.1C17—C18—H18A109.5
C5—C6—C1116.4 (3)C17—C18—H18B109.5
C5—C6—C7118.7 (3)H18A—C18—H18B109.5
C1—C6—C7124.8 (3)C17—C18—H18C109.5
C12—C7—C8119.3 (3)H18A—C18—H18C109.5
C12—C7—C6121.9 (3)H18B—C18—H18C109.5
C8—C7—C6118.7 (3)C17—C19—H19A109.5
C9—C8—C7120.5 (4)C17—C19—H19B109.5
C9—C8—H8119.8H19A—C19—H19B109.5
C7—C8—H8119.8C17—C19—H19C109.5
C8—C9—C10119.9 (4)H19A—C19—H19C109.5
C8—C9—H9120.1H19B—C19—H19C109.5
C10—C9—H9120.1C17—C20—H20A109.5
C9—C10—C11120.1 (4)C17—C20—H20B109.5
C9—C10—H10120H20A—C20—H20B109.5
C11—C10—H10120C17—C20—H20C109.5
C10—C11—C12120.0 (4)H20A—C20—H20C109.5
C10—C11—H11120H20B—C20—H20C109.5
C12—C11—H11120Cl2—C21—Cl3111.6 (2)
C7—C12—C11120.2 (4)Cl2—C21—H21A109.3
C7—C12—H12119.9Cl3—C21—H21A109.3
C11—C12—H12119.9Cl2—C21—H21B109.3
C15—C13—C14109.0 (3)Cl3—C21—H21B109.3
C15—C13—C16110.7 (3)H21A—C21—H21B108
C14—C13—C16108.7 (3)Pd1i—Cl1—Pd192.33 (3)
C15—C13—P7114.4 (2)C1—P7—C13112.74 (15)
C14—C13—P7105.4 (2)C1—P7—C17112.13 (16)
C16—C13—P7108.4 (2)C13—P7—C17114.90 (15)
C13—C14—H14A109.5C1—P7—Pd185.84 (11)
C13—C14—H14B109.5C13—P7—Pd1115.73 (12)
H14A—C14—H14B109.5C17—P7—Pd1112.17 (11)
C13—C14—H14C109.5C2—Pd1—P768.84 (10)
H14A—C14—H14C109.5C2—Pd1—Cl1i97.07 (10)
H14B—C14—H14C109.5P7—Pd1—Cl1i165.87 (3)
C13—C15—H15A109.5C2—Pd1—Cl1174.81 (10)
C13—C15—H15B109.5P7—Pd1—Cl1106.44 (3)
H15A—C15—H15B109.5Cl1i—Pd1—Cl187.67 (3)
C13—C15—H15C109.5
C6—C1—C2—C32.4 (5)C14—C13—P7—C155.2 (3)
P7—C1—C2—C3179.9 (3)C16—C13—P7—C1171.4 (2)
C6—C1—C2—Pd1172.0 (3)C15—C13—P7—C1765.6 (3)
P7—C1—C2—Pd15.8 (2)C14—C13—P7—C17174.7 (2)
C1—C2—C3—C40.5 (5)C16—C13—P7—C1758.4 (3)
Pd1—C2—C3—C4172.6 (3)C15—C13—P7—Pd1161.1 (2)
C2—C3—C4—C51.2 (6)C14—C13—P7—Pd141.4 (3)
C3—C4—C5—C61.2 (6)C16—C13—P7—Pd174.9 (2)
C4—C5—C6—C10.6 (5)C18—C17—P7—C193.1 (3)
C4—C5—C6—C7176.1 (3)C20—C17—P7—C128.9 (3)
C2—C1—C6—C52.4 (5)C19—C17—P7—C1144.9 (2)
P7—C1—C6—C5178.7 (3)C18—C17—P7—C1337.4 (3)
C2—C1—C6—C7174.1 (3)C20—C17—P7—C13159.4 (2)
P7—C1—C6—C72.2 (7)C19—C17—P7—C1384.6 (3)
C5—C6—C7—C12114.5 (4)C18—C17—P7—Pd1172.3 (2)
C1—C6—C7—C1269.1 (5)C20—C17—P7—Pd165.7 (2)
C5—C6—C7—C863.4 (4)C19—C17—P7—Pd150.3 (3)
C1—C6—C7—C8113.0 (4)C1—C2—Pd1—P75.1 (2)
C12—C7—C8—C91.8 (5)C3—C2—Pd1—P7178.8 (4)
C6—C7—C8—C9179.8 (3)C1—C2—Pd1—Cl1i176.0 (2)
C7—C8—C9—C100.3 (5)C3—C2—Pd1—Cl1i2.3 (3)
C8—C9—C10—C112.2 (6)C1—P7—Pd1—C23.63 (15)
C9—C10—C11—C121.9 (6)C13—P7—Pd1—C2116.91 (16)
C8—C7—C12—C112.0 (5)C17—P7—Pd1—C2108.59 (16)
C6—C7—C12—C11180.0 (3)C1—P7—Pd1—Cl1i8.08 (19)
C10—C11—C12—C70.2 (5)C13—P7—Pd1—Cl1i121.36 (17)
C2—C1—P7—C13121.0 (2)C17—P7—Pd1—Cl1i104.15 (17)
C6—C1—P7—C1355.8 (5)C1—P7—Pd1—Cl1174.08 (11)
C2—C1—P7—C17107.4 (2)C13—P7—Pd1—Cl160.80 (12)
C6—C1—P7—C1775.7 (5)C17—P7—Pd1—Cl173.70 (12)
C2—C1—P7—Pd14.8 (2)Pd1i—Cl1—Pd1—P7179.47 (3)
C6—C1—P7—Pd1172.0 (4)Pd1i—Cl1—Pd1—Cl1i0
C15—C13—P7—C164.6 (3)
Symmetry code: (i) x+1, y, z.
Acknowledgements top

We would like to acknowledge the University for Johannesburg for financial assistance.

references
References top

Beletskaya, I. P. & Cheprakov, A. V. (2004). J. Organomet. Chem. 689, 4055–4082.

Bennett, M. A., Bhargava, S. K., Bond, A. M., Burgar, I. M., Guo, S.-X., Kar, G., Priv'er, S. H., Wagler, J., Willis, A. C. & Torriero, A. A. J. (2010). Dalton Trans. 39, 9079–9090.

Bruker (2008). APEX2, SAINT-Plus, SADABS and XPREP. BrukerAXS Inc, Madison, Wisconsin, USA.

Christmann, U., Pantazis, D. A., Benet-Buchholz, J., McGrady, J. E., Maseras, F. & Vilar, R. (2006). J. Am. Chem. Soc. 128, 6376–6990.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Garrou, P. E. (1981). Chem. Rev. 81, 229–266.

Herrmann, W. A., Öfele, K., Von Preysing, D. & Schneider, S. K. (2003). J. Organomet. Chem. 687, 229–248.

Mohr, F., Priver, S. H., Bhargava, S. K. & Bennett, M. A. (2006). Coord. Chem. Rev. 250, 1851–1888.

Omondi, B., Shaw, M. L. & Holzapfel, C. W. (2011). J. Organomet. Chem. 696, 3091–3096.

Orlye, F. d' & Jutland, A. (2005). Tetrahedron, 61, 9670–9678.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sole, D., Vallverdu', L., Solans, X., Font-Bardia, M. & Bonjoch, J. (2004). Organometallics, 23, 1438–1447.

Williams, D. G. B., Shaw, M. L., Green, M. J. & Holzapfel, C. W. (2008). Angew. Chem. Int. Ed. 47, 560–563.