supplementary materials


lh5573 scheme

Acta Cryst. (2013). E69, m83-m84    [ doi:10.1107/S1600536812051562 ]

Di-[mu]-thiosemicarbazide-[kappa]4S:S-bis[chloridobis(triphenylphosphane-[kappa]P)silver(I)]

Y. Wattanakanjana, C. Pakawatchai and R. Nimthong

Abstract top

The dinuclear title complex, [Ag2Cl2(CH5N3S)2(C18H15P)2], lies across an inversion center. The AgI ion exhibits a slightly distorted tetrahedral coordination geometry formed by a P atom from a triphenylphosphane ligand, two metal-bridging S atoms from thiosemicabazide ligands and one chloride ion. The S atoms bridge two symmetry-related AgI ions, forming a strictly planar Ag2S2 core with an Ag...Ag separation of 2.7802 (7) Å. There is an intramolecular N-H...Cl hydrogen bond. In the crystal, N-H...Cl and N-H...S hydrogen bonds link complex molecules, forming layers parallel to (001). These layers are connected through [pi]-[pi] stacking interactions [centroid-centroid distance = 3.665 (2) Å], leading to the formation of a three-dimensional network.

Comment top

Metal(I) complexes of phosphine ligands have been extensively studied as precursors for preparing mixed-ligand complexes (Ferrari et al., 2007; Pakawatchai et al., 2012) having different geometries such as mononuclear and dinuclear. Thiosemicabazide and thiosemicarbazide derivatives, as well as their metal complexes, have recently attracted considerable attention because of their relevance in biological systems such as antitumor, antimicrobial, antibacterial and antifungal activities (Pandeya et al., 1999; Wujec et al., 2009; Mohareb et al., 2012; He et al., 2012). Herein, the crystal structure of a dinuclear silver(I) chloride complex containing triphenylphosphane and thiosemicarbazide is described.

The molecular structure of the title dinuclear compound is shown in Fig. 1. The molecule lies acroos a crystallographic inversion center which is at the center of the Ag2S2 core with a Ag···Ag separation of 2.7802 (7) Å. The bond angles around AgI ion are approximately in the range of 111.851 (15)–123.445 (15)°. Geometrical distortion from ideal angles (109.47°) can be explained by the need to accommodate the bulky triphenylphosphane groups. The P1—Ag1 bond length of 2.4225 (4) Å is slightly longer than that found in for example [Ag2(C6H7N2S)2(C18H15P)2], which is 2.4088 (6) Å (Wattanakanjana et al., 2012). The bridging Ag—S bond length (Ag1—S1 = 2.5202 (4) Å) is shorter than those observed in related silver(I) complexes containing S-bridged donor ligand, due to 2.5832 (8)–2.7208 (11) Å for [Ag2Cl2(l-S-pySH)2(PPh3)2] and 2.6306 (4)–2.6950 (7) Å for [Ag2Br2(l-S-pySH)2(PPh3)2] (Lobana et al., 2008). There is intramolecular N—H···Cl hydrogen bond with the geometry N1···Cl1 = 3.3239 (16) Å. In the crystal, an N1—H1B···Cl1 hydrogen bond connects molecules forming one dimensional chain alongs [010]. Each chain is linked through N2—H2···S1 and N3—H3B···Cl1 hydrogen bonds forming a layer parallel to (001) (Fig. 2). In addition, the layers are stacked via π···π stacking interactions [centroid–centroid distance = 3.665 (2) Å, centroid = C31—C36 ring] froming the three dimensional network (Fig. 3).

Related literature top

For metal(I) complexes of phosphine ligands as precursors for the preparation of mixed-ligand complexes, see: Ferrari et al. (2007); Pakawatchai et al. (2012). For potential applications of thiosemicarbazide derivatives and their metal complexes, see: Pandeya et al. (1999); Wujec et al. (2009); Mohareb & Mohamed (2012); He et al. (2012). For examples of related discrete complexes, see: Wattanakanjana et al. (2012); Lobana et al. (2008).

Experimental top

Triphenylphosphane (0.37 g, 1.41 mmol) was dissolved in 30 cm3 of acetonitrile at 335 K. AgCl (0.10 g, 0.70 mmol) was added and the mixture was stirred for 2.5 h. Thiosemicabazide (0.06 g, 0.66 mmol) was added and the new reaction mixture was heated under reflux for 5 h. The resulting clear solution was filtered off and left to evaporate at room temperature. The crystalline solid, which was deposited upon standing for few days, was filtered off and dried under reduced pressure.

Refinement top

All H atoms bonded to C atoms were constrained with a riding model of 0.93 Å, and Uiso(H) = 1.2Ueq(C). H atoms bonded to the N atoms were located in a difference Fourier map and refined isotropically, with restrained N—H distances 0.834 (16)–0.888 (16) Å with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 30% probability level. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Part of the crystal structure with N—H···S and N—H···Cl hydrogen bonds shown as dashed lines.
[Figure 3] Fig. 3. Part of the crystal structure with ππ stacking interactions shown as dashed lines.
Di-µ-thiosemicarbazide- κ4S:S-bis[chloridobis(triphenylphosphane-κP)silver(I)] top
Crystal data top
[Ag2Cl2(CH5N3S)2(C18H15P)2]Z = 1
Mr = 993.46F(000) = 500
Triclinic, P1Dx = 1.588 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7845 (4) ÅCell parameters from 9010 reflections
b = 9.4656 (4) Åθ = 2.3–28.0°
c = 13.7529 (6) ŵ = 1.28 mm1
α = 109.276 (1)°T = 293 K
β = 98.306 (1)°Block, colorless
γ = 99.739 (1)°0.38 × 0.30 × 0.10 mm
V = 1038.94 (8) Å3
Data collection top
Bruker SMART CCD
diffractometer
5026 independent reflections
Radiation source: fine-focus sealed tube4627 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Full–matrix least–squares on F2 scansθmax = 28.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1111
Tmin = 0.638, Tmax = 0.880k = 1212
14302 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0293P)2 + 0.2733P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.003
5026 reflectionsΔρmax = 0.38 e Å3
251 parametersΔρmin = 0.55 e Å3
5 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0693 (18)
Crystal data top
[Ag2Cl2(CH5N3S)2(C18H15P)2]γ = 99.739 (1)°
Mr = 993.46V = 1038.94 (8) Å3
Triclinic, P1Z = 1
a = 8.7845 (4) ÅMo Kα radiation
b = 9.4656 (4) ŵ = 1.28 mm1
c = 13.7529 (6) ÅT = 293 K
α = 109.276 (1)°0.38 × 0.30 × 0.10 mm
β = 98.306 (1)°
Data collection top
Bruker SMART CCD
diffractometer
5026 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
4627 reflections with I > 2σ(I)
Tmin = 0.638, Tmax = 0.880Rint = 0.036
14302 measured reflectionsθmax = 28.0°
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069Δρmax = 0.38 e Å3
S = 1.06Δρmin = 0.55 e Å3
5026 reflectionsAbsolute structure: ?
251 parametersFlack parameter: ?
5 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.71808 (17)1.20926 (18)0.50782 (12)0.0350 (3)
C111.16762 (18)0.7721 (2)0.21780 (12)0.0418 (3)
C121.2004 (2)0.6279 (3)0.18680 (16)0.0564 (5)
H121.11940.54030.16750.068*
C131.3557 (3)0.6145 (3)0.18463 (19)0.0701 (6)
H131.37810.51770.16350.084*
C141.4747 (3)0.7429 (4)0.21342 (19)0.0712 (7)
H141.57780.73300.21110.085*
C151.4436 (2)0.8871 (3)0.24596 (17)0.0628 (6)
H151.52550.97410.26570.075*
C161.2904 (2)0.9025 (2)0.24935 (14)0.0481 (4)
H161.26950.99990.27270.058*
C210.84762 (18)0.61752 (19)0.20371 (13)0.0404 (3)
C220.7696 (2)0.5083 (2)0.10569 (15)0.0546 (4)
H220.77940.52840.04480.065*
C230.6776 (3)0.3701 (3)0.09818 (19)0.0678 (6)
H230.62570.29770.03220.081*
C240.6619 (3)0.3386 (3)0.1867 (2)0.0732 (6)
H240.60230.24390.18090.088*
C250.7351 (3)0.4481 (3)0.2851 (2)0.0789 (7)
H250.72280.42760.34560.095*
C260.8265 (3)0.5878 (3)0.29402 (17)0.0619 (5)
H260.87370.66180.36030.074*
C310.90601 (19)0.8272 (2)0.09696 (15)0.0447 (4)
C320.9697 (3)0.7705 (2)0.00965 (15)0.0562 (4)
H321.05250.72200.01470.067*
C330.9124 (3)0.7846 (3)0.08519 (19)0.0758 (7)
H330.95640.74630.14330.091*
C340.7892 (4)0.8561 (4)0.0922 (3)0.0916 (10)
H340.74830.86420.15590.110*
C350.7272 (3)0.9150 (4)0.0065 (3)0.0931 (10)
H350.64490.96390.01210.112*
C360.7850 (2)0.9031 (3)0.0888 (2)0.0666 (6)
H360.74320.94570.14720.080*
N10.82011 (18)1.32995 (18)0.51108 (14)0.0474 (3)
N20.57728 (17)1.22460 (17)0.52697 (14)0.0478 (3)
N30.5365 (2)1.3672 (2)0.54628 (19)0.0609 (5)
P10.96967 (5)0.80383 (5)0.22142 (3)0.03895 (10)
S10.75685 (4)1.02919 (4)0.47995 (3)0.03889 (10)
Cl11.13857 (6)1.28186 (5)0.41121 (4)0.05418 (12)
Ag10.977789 (17)1.016088 (15)0.381354 (12)0.05737 (8)
H1A0.912 (2)1.320 (3)0.4929 (19)0.069*
H1B0.797 (3)1.417 (2)0.530 (2)0.069*
H20.518 (3)1.146 (2)0.526 (2)0.069*
H3A0.528 (3)1.404 (3)0.6102 (14)0.069*
H3B0.443 (2)1.349 (3)0.5070 (18)0.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0332 (7)0.0382 (7)0.0346 (7)0.0098 (6)0.0061 (5)0.0142 (6)
C110.0328 (7)0.0549 (10)0.0334 (7)0.0156 (7)0.0070 (6)0.0082 (7)
C120.0476 (10)0.0577 (11)0.0546 (10)0.0222 (9)0.0088 (8)0.0047 (9)
C130.0606 (13)0.0856 (17)0.0659 (13)0.0444 (13)0.0159 (10)0.0154 (12)
C140.0395 (10)0.116 (2)0.0689 (13)0.0367 (12)0.0176 (9)0.0363 (14)
C150.0352 (9)0.0982 (17)0.0597 (12)0.0118 (10)0.0102 (8)0.0366 (12)
C160.0377 (8)0.0630 (11)0.0454 (9)0.0119 (8)0.0088 (7)0.0218 (8)
C210.0336 (7)0.0431 (8)0.0419 (8)0.0124 (6)0.0080 (6)0.0107 (7)
C220.0610 (11)0.0483 (10)0.0432 (9)0.0011 (8)0.0152 (8)0.0063 (8)
C230.0743 (14)0.0492 (11)0.0610 (12)0.0057 (10)0.0126 (11)0.0063 (9)
C240.0709 (14)0.0592 (13)0.0896 (17)0.0004 (11)0.0118 (12)0.0368 (13)
C250.0872 (17)0.0848 (17)0.0714 (15)0.0060 (14)0.0063 (13)0.0483 (14)
C260.0638 (12)0.0692 (13)0.0483 (10)0.0083 (10)0.0014 (9)0.0249 (10)
C310.0343 (7)0.0401 (8)0.0552 (10)0.0030 (6)0.0044 (7)0.0166 (7)
C320.0637 (12)0.0529 (11)0.0468 (10)0.0099 (9)0.0097 (8)0.0141 (8)
C330.0969 (19)0.0617 (13)0.0547 (12)0.0107 (13)0.0015 (12)0.0234 (11)
C340.0875 (19)0.0859 (19)0.097 (2)0.0152 (15)0.0220 (16)0.0621 (18)
C350.0588 (14)0.100 (2)0.138 (3)0.0163 (14)0.0038 (16)0.078 (2)
C360.0438 (10)0.0688 (13)0.1000 (17)0.0183 (9)0.0158 (11)0.0442 (13)
N10.0388 (7)0.0386 (7)0.0699 (10)0.0106 (6)0.0169 (7)0.0230 (7)
N20.0372 (7)0.0396 (7)0.0729 (10)0.0145 (6)0.0200 (7)0.0226 (7)
N30.0468 (9)0.0477 (9)0.0920 (14)0.0236 (7)0.0164 (9)0.0234 (9)
P10.03125 (19)0.0388 (2)0.0393 (2)0.00988 (15)0.00878 (15)0.00323 (16)
S10.03454 (18)0.03454 (19)0.0490 (2)0.01021 (14)0.01279 (15)0.01437 (16)
Cl10.0497 (2)0.0406 (2)0.0713 (3)0.00658 (17)0.0195 (2)0.0183 (2)
Ag10.05604 (11)0.04168 (10)0.06025 (12)0.00514 (6)0.02583 (7)0.00213 (7)
Geometric parameters (Å, º) top
C1—N11.311 (2)C25—H250.9300
C1—N21.323 (2)C26—H260.9300
C1—S11.7236 (16)C31—C321.383 (3)
C11—C121.383 (3)C31—C361.391 (3)
C11—C161.391 (3)C31—P11.8184 (18)
C11—P11.8189 (16)C32—C331.386 (3)
C12—C131.394 (3)C32—H320.9300
C12—H120.9300C33—C341.377 (4)
C13—C141.364 (4)C33—H330.9300
C13—H130.9300C34—C351.360 (5)
C14—C151.377 (4)C34—H340.9300
C14—H140.9300C35—C361.383 (4)
C15—C161.384 (3)C35—H350.9300
C15—H150.9300C36—H360.9300
C16—H160.9300N1—H1A0.888 (16)
C21—C221.389 (2)N1—H1B0.851 (17)
C21—C261.391 (3)N2—N31.406 (2)
C21—P11.8221 (18)N2—H20.834 (16)
C22—C231.381 (3)N3—H3A0.851 (16)
C22—H220.9300N3—H3B0.870 (16)
C23—C241.366 (4)P1—Ag12.4225 (4)
C23—H230.9300S1—Ag12.5202 (4)
C24—C251.384 (4)Cl1—Ag12.5378 (5)
C24—H240.9300Ag1—Ag1i3.3502 (4)
C25—C261.383 (3)
N1—C1—N2119.02 (15)C32—C31—P1123.22 (14)
N1—C1—S1123.57 (12)C36—C31—P1118.21 (17)
N2—C1—S1117.41 (12)C31—C32—C33121.2 (2)
C12—C11—C16119.68 (16)C31—C32—H32119.4
C12—C11—P1123.64 (15)C33—C32—H32119.4
C16—C11—P1116.68 (13)C34—C33—C32119.1 (3)
C11—C12—C13119.7 (2)C34—C33—H33120.5
C11—C12—H12120.2C32—C33—H33120.5
C13—C12—H12120.2C35—C34—C33120.4 (2)
C14—C13—C12120.2 (2)C35—C34—H34119.8
C14—C13—H13119.9C33—C34—H34119.8
C12—C13—H13119.9C34—C35—C36120.9 (3)
C13—C14—C15120.57 (19)C34—C35—H35119.6
C13—C14—H14119.7C36—C35—H35119.6
C15—C14—H14119.7C35—C36—C31119.8 (3)
C14—C15—C16120.0 (2)C35—C36—H36120.1
C14—C15—H15120.0C31—C36—H36120.1
C16—C15—H15120.0C1—N1—H1A120.0 (17)
C15—C16—C11119.9 (2)C1—N1—H1B119.0 (18)
C15—C16—H16120.1H1A—N1—H1B121 (2)
C11—C16—H16120.1C1—N2—N3120.06 (15)
C22—C21—C26118.97 (18)C1—N2—H2115.7 (18)
C22—C21—P1123.40 (14)N3—N2—H2124.3 (19)
C26—C21—P1117.55 (14)N2—N3—H3A109.2 (19)
C23—C22—C21120.31 (19)N2—N3—H3B106.8 (18)
C23—C22—H22119.8H3A—N3—H3B107 (2)
C21—C22—H22119.8C31—P1—C11103.77 (8)
C24—C23—C22120.6 (2)C31—P1—C21103.33 (8)
C24—C23—H23119.7C11—P1—C21105.00 (8)
C22—C23—H23119.7C31—P1—Ag1117.05 (6)
C23—C24—C25119.7 (2)C11—P1—Ag1109.59 (5)
C23—C24—H24120.1C21—P1—Ag1116.71 (6)
C25—C24—H24120.1C1—S1—Ag1108.17 (5)
C26—C25—C24120.3 (2)P1—Ag1—S1123.445 (15)
C26—C25—H25119.8P1—Ag1—Cl1119.164 (17)
C24—C25—H25119.8S1—Ag1—Cl1111.851 (15)
C25—C26—C21120.0 (2)P1—Ag1—Ag1i122.531 (13)
C25—C26—H26120.0S1—Ag1—Ag1i58.885 (10)
C21—C26—H26120.0Cl1—Ag1—Ag1i105.880 (14)
C32—C31—C36118.6 (2)
C16—C11—C12—C131.8 (3)C36—C31—P1—C2191.93 (16)
P1—C11—C12—C13178.80 (17)C32—C31—P1—Ag1143.54 (15)
C11—C12—C13—C140.3 (4)C36—C31—P1—Ag137.84 (17)
C12—C13—C14—C150.7 (4)C12—C11—P1—C3196.91 (17)
C13—C14—C15—C160.2 (3)C16—C11—P1—C3183.68 (14)
C14—C15—C16—C111.3 (3)C12—C11—P1—C2111.23 (18)
C12—C11—C16—C152.3 (3)C16—C11—P1—C21168.18 (13)
P1—C11—C16—C15178.27 (14)C12—C11—P1—Ag1137.34 (15)
C26—C21—C22—C232.5 (3)C16—C11—P1—Ag142.07 (14)
P1—C21—C22—C23179.27 (18)C22—C21—P1—C3118.41 (17)
C21—C22—C23—C240.0 (4)C26—C21—P1—C31158.39 (15)
C22—C23—C24—C252.0 (4)C22—C21—P1—C1190.05 (16)
C23—C24—C25—C261.3 (5)C26—C21—P1—C1193.14 (16)
C24—C25—C26—C211.3 (4)C22—C21—P1—Ag1148.38 (14)
C22—C21—C26—C253.1 (3)C26—C21—P1—Ag128.42 (16)
P1—C21—C26—C25179.9 (2)N1—C1—S1—Ag121.93 (16)
C36—C31—C32—C331.7 (3)N2—C1—S1—Ag1158.21 (12)
P1—C31—C32—C33176.89 (16)C31—P1—Ag1—S196.31 (6)
C31—C32—C33—C340.2 (3)C11—P1—Ag1—S1145.95 (6)
C32—C33—C34—C351.4 (4)C21—P1—Ag1—S126.83 (6)
C33—C34—C35—C360.7 (4)C31—P1—Ag1—Cl155.26 (7)
C34—C35—C36—C311.3 (4)C11—P1—Ag1—Cl162.48 (7)
C32—C31—C36—C352.5 (3)C21—P1—Ag1—Cl1178.40 (6)
P1—C31—C36—C35176.20 (19)C31—P1—Ag1—Ag1i168.06 (6)
N1—C1—N2—N32.5 (3)C11—P1—Ag1—Ag1i74.21 (7)
S1—C1—N2—N3177.61 (15)C21—P1—Ag1—Ag1i44.92 (6)
C32—C31—P1—C1122.69 (18)C1—S1—Ag1—P1132.43 (5)
C36—C31—P1—C11158.69 (16)C1—S1—Ag1—Cl120.96 (6)
C32—C31—P1—C2186.69 (17)C1—S1—Ag1—Ag1i116.84 (5)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···Cl1ii0.87 (2)2.67 (2)3.535 (2)171 (2)
N2—H2···S1iii0.83 (2)2.66 (2)3.4320 (15)155 (2)
N1—H1B···Cl1iv0.85 (2)2.63 (2)3.4088 (16)154 (2)
N1—H1A···Cl10.89 (2)2.45 (2)3.3239 (16)170 (2)
Symmetry codes: (ii) x1, y, z; (iii) x+1, y+2, z+1; (iv) x+2, y+3, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···Cl1i0.870 (16)2.673 (17)3.535 (2)171 (2)
N2—H2···S1ii0.834 (16)2.656 (19)3.4320 (15)155 (2)
N1—H1B···Cl1iii0.851 (17)2.625 (19)3.4088 (16)154 (2)
N1—H1A···Cl10.888 (16)2.446 (17)3.3239 (16)170 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+1; (iii) x+2, y+3, z+1.
Acknowledgements top

We gratefully acknowledge financial support from the Center for Innovation in Chemistry (PERCH–CIC), the Commission on Higher Education, Ministry of Education, the Department of Chemistry and the Graduate School, Prince of Songkla University.

references
References top

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Ferrari, M. B., Bisceglie, F., Cavalli, E., Pelosi, G., Tarasconi, P. & Verdolino, V. (2007). Inorg. Chim. Acta, 360, 3233–3240.

He, J., Wang, X., Zhao, X., Liang, Y., He, H. & Fu, L. (2012). Eur. J. Med. Chem. 54, 925–930.

Lobana, T. S., Sharma, R. S. & Butcher, R. J. (2008). Polyhedron, 27, 1375–1380.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Mohareb, R. M. & Mohamed, A. A. (2012). Int. J. Pure. Appl. Chem. 2, 144–155.

Pakawatchai, C., Jantaramas, P., Mokhagul, J. & Nimthong, R. (2012). Acta Cryst. E68, m1506–m1507.

Pandeya, S. N., Sriram, D., Nath, G. & DeClercq, E. (1999). Eur. J. Pharm. Sci. 9, 25–31.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wattanakanjana, Y., Pakawatchai, C., Kowittheeraphong, S. & Nimthong, R. (2012). Acta Cryst. E68, m1572–m1573.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Wujec, M., Stefańska, J., Siwek, A. & Tatarczak, M. (2009). Acta Polon. Pharm. Drug Res. 66, 73–82.