organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Di­hydroxy-N,N′-(ethane-1,2-di­yl)di­benzamide

aEscola de Quimica e Alimentos, Universidade Federal do Rio Grande, Av. Italia, km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil, and bDepartamento de Quimica, Universidade Federal de Santa Maria, Av. Roraima Campus, 97105-900 Santa Maria-RS, Brazil
*Correspondence e-mail: sabrinanobre@furg.br

(Received 20 December 2012; accepted 27 December 2012; online 9 January 2013)

The asymmetric unit of the title compound, C16H16N2O4, contains one half-mol­ecule, the whole mol­ecule being generated by an inversion center located at the mid-point of the C—C bond of the central ethane group. An intra­molecular O—H⋯O hydrogen bond forms an S(6) ring motif. In the crystal, mol­ecules are connected via N—H⋯O hydrogen bonds, generating infinite chains along [1-10].

Related literature

For the synthesis of bis­amides, see: Apurba et al. (2002[Apurba, K., Patra, A. K., Olmstead, M. M. & Mascharak, P. K. (2002). Inorg. Chem. 41, 5403-5409.]); Fry et al. (2010[Fry, N. L., Rose, M. J., Rogow, D. L., Nyitray, C., Kaur, M. & Mascharak, P. K. (2010). Inorg. Chem. 49, 1487-1495.]). For similar bis­amide crystal structures, see: Booysen et al. (2009[Booysen, I., Gerber, T. I. A., Hosten, E. & Mayer, P. (2009). Acta Cryst. E65, o850.]). For applications of bis­amides as catalysts, see: Maurya et al. (2003[Maurya, M. R., Titinchi, S. J. J. & Chand, S. (2003). Catal. Lett. 89, 219-227.]); Liu et al. (2011[Liu, H. Y., Wang, K., Fu, H. Y., Yuan, M. L. & Chen, H. (2011). Chin. Chem. Lett. 22, 738-740.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O4

  • Mr = 300.31

  • Triclinic, [P \overline 1]

  • a = 4.6311 (3) Å

  • b = 5.0435 (3) Å

  • c = 15.2957 (9) Å

  • α = 89.091 (4)°

  • β = 83.315 (4)°

  • γ = 85.956 (4)°

  • V = 353.94 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.34 × 0.24 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: gaussian (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.989

  • 9142 measured reflections

  • 1535 independent reflections

  • 924 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.143

  • S = 1.01

  • 1535 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.76 2.495 (2) 148
N—H0⋯O1i 0.86 2.21 2.993 (2) 151
Symmetry code: (i) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Nitrogenated compound amines, imines and amides are part of a broad class of molecules having a pharmacological and technological profile (Fry et al. 2010). Bisamides can be synthesized from a reaction between a diamine and an acylhalide under reflux (Apurba et al. 2002 ; Fry et al. 2010). Some synthesized bisamides have had their crystal structure determined (Booysen et al. 2009). However, others have been synthesized and applied to several reactions, such as the hydroformylation of phenol (Maurya et al. 2003) and due to the simplicity of the synthesis of these compounds, they have being applied to coupling reactions, such as the Suzuki reaction (Liu et al. 2011). The asymmetric unit is formed by one half of the molecule and the whole molecule is generated through a crystallographic center of symmetry placed in the mid-point of the C-C bond of the ethane bridging moiety (Fig. 1). Intramolecular and intermolecular classical hydrogen bond interactions are observed in the solid state. Each molecule participates in intermolecular hydrogen bond interactions with two other neighboring molecules through Nii–H0ii···O1 with a distance of 2.210 Å (symmetry code: (ii) -1 + x, 1 + y, z). The intramolecular hydrogen bonding systems forms six membered rings, showing a shorter distance of 1.763 Å (O2···H1–O1). These hydrogen bonding may contribute to the stabilization of the crystal structure (Fig. 2).

Related literature top

For the synthesis of bisamides, see: Apurba et al. (2002); Fry et al. (2010). For similar bisamide crystal structures, see: Booysen et al. (2009). For applications of bisamides as catalysts, see: Maurya et al. (2003); Liu et al. (2011).

Experimental top

Ethylenediamine (0.1 mol, 6.6 ml) was added to a solution containing methyl salicylate (0.2 mol, 25.7 ml). The mixture was refluxed for 7 h. The reaction product was washed with ethyl acetate (3 times in 30 ml) and dried over CaCl2. After recrystallization from hexane, a yellow solid was obtained (23.1 g, 77%).

Refinement top

H atoms attached to aromatic C atoms were positioned with idealized geometry and were refined isotropic with Ueq(H) set to 1.2 times of the Ueq(C) using a riding model with C–H = 0.93 Å. H atoms attached to N atoms and to the ethylene fragment were located in difference Fourier maps. Their positional and isotropic displacement parameters were refined.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular projection showing the asymmetric unit represented in dark colors. Ellipsoid probability: 50%. Symmetry codes: (i) 2–x, 1–y, 2–z
[Figure 2] Fig. 2. Packing diagram view showing the intramolecular e intermolecular hydrogen bond interactions. Some hydrogen atoms were omitted for clarity. (ii) -1 + x, 1 + y, z
2,2'-Dihydroxy-N,N'-(ethane-1,2-diyl)dibenzamide top
Crystal data top
C16H16N2O4Z = 1
Mr = 300.31F(000) = 158
Triclinic, P1Dx = 1.409 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.6311 (3) ÅCell parameters from 1575 reflections
b = 5.0435 (3) Åθ = 2.7–25.8°
c = 15.2957 (9) ŵ = 0.10 mm1
α = 89.091 (4)°T = 296 K
β = 83.315 (4)°Block, colourless
γ = 85.956 (4)°0.34 × 0.24 × 0.11 mm
V = 353.94 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1535 independent reflections
Radiation source: fine-focus sealed tube924 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 27.1°, θmin = 2.7°
Absorption correction: gaussian
(SADABS; Bruker, 2009)
h = 55
Tmin = 0.966, Tmax = 0.989k = 66
9142 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0644P)2 + 0.0596P]
where P = (Fo2 + 2Fc2)/3
1535 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C16H16N2O4γ = 85.956 (4)°
Mr = 300.31V = 353.94 (4) Å3
Triclinic, P1Z = 1
a = 4.6311 (3) ÅMo Kα radiation
b = 5.0435 (3) ŵ = 0.10 mm1
c = 15.2957 (9) ÅT = 296 K
α = 89.091 (4)°0.34 × 0.24 × 0.11 mm
β = 83.315 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
1535 independent reflections
Absorption correction: gaussian
(SADABS; Bruker, 2009)
924 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.989Rint = 0.033
9142 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.01Δρmax = 0.13 e Å3
1535 reflectionsΔρmin = 0.16 e Å3
100 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4041 (3)1.1108 (3)0.79344 (10)0.0718 (5)
H10.46771.09000.84110.108*
O20.7318 (3)0.9317 (3)0.90207 (9)0.0629 (5)
N1.0113 (3)0.5534 (3)0.87856 (10)0.0507 (5)
H01.07090.42480.84330.061*
C10.7459 (4)0.7361 (3)0.76153 (11)0.0426 (5)
C20.5357 (4)0.9263 (4)0.73646 (12)0.0496 (5)
C30.4584 (5)0.9234 (5)0.65190 (15)0.0676 (6)
H30.31841.04950.63520.081*
C40.5845 (5)0.7384 (4)0.59253 (14)0.0649 (6)
H40.53120.74050.53570.078*
C50.7895 (5)0.5493 (5)0.61620 (14)0.0655 (6)
H50.87420.42200.57600.079*
C60.8674 (5)0.5507 (4)0.69979 (13)0.0589 (6)
H61.00680.42260.71560.071*
C70.8293 (4)0.7466 (4)0.85175 (12)0.0448 (5)
C81.1112 (4)0.5513 (4)0.96491 (12)0.0523 (5)
H8A1.15170.73040.97960.063*
H8B1.29130.44020.96360.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0882 (11)0.0606 (9)0.0622 (9)0.0348 (8)0.0120 (8)0.0122 (7)
O20.0780 (10)0.0543 (9)0.0545 (9)0.0202 (7)0.0125 (7)0.0214 (7)
N0.0591 (10)0.0484 (10)0.0439 (9)0.0123 (8)0.0115 (7)0.0116 (7)
C10.0458 (10)0.0388 (10)0.0426 (10)0.0022 (8)0.0050 (8)0.0043 (8)
C20.0569 (11)0.0402 (10)0.0501 (11)0.0053 (9)0.0049 (9)0.0011 (9)
C30.0806 (15)0.0620 (14)0.0601 (13)0.0147 (12)0.0198 (12)0.0036 (11)
C40.0828 (16)0.0679 (15)0.0459 (12)0.0029 (12)0.0165 (11)0.0007 (11)
C50.0820 (15)0.0642 (14)0.0490 (12)0.0113 (12)0.0094 (11)0.0158 (10)
C60.0696 (13)0.0567 (13)0.0488 (12)0.0176 (10)0.0111 (10)0.0120 (10)
C70.0458 (10)0.0420 (10)0.0456 (10)0.0040 (8)0.0041 (8)0.0085 (8)
C80.0540 (11)0.0563 (12)0.0477 (11)0.0058 (9)0.0154 (8)0.0091 (9)
Geometric parameters (Å, º) top
O1—C21.349 (2)C3—C41.365 (3)
O1—H10.8206C3—H30.9300
O2—C71.245 (2)C4—C51.372 (3)
N—C71.334 (2)C4—H40.9300
N—C81.449 (2)C5—C61.369 (3)
N—H00.8600C5—H50.9300
C1—C61.383 (2)C6—H60.9300
C1—C21.400 (3)C8—C8i1.511 (4)
C1—C71.478 (2)C8—H8A0.9700
C2—C31.382 (3)C8—H8B0.9700
C2—O1—H1109.5C6—C5—C4119.07 (19)
C7—N—C8122.58 (15)C6—C5—H5120.5
C7—N—H0118.6C4—C5—H5120.5
C8—N—H0118.8C5—C6—C1122.21 (18)
C6—C1—C2117.95 (17)C5—C6—H6118.9
C6—C1—C7123.62 (16)C1—C6—H6118.9
C2—C1—C7118.42 (15)O2—C7—N120.36 (17)
O1—C2—C3119.21 (17)O2—C7—C1120.87 (16)
O1—C2—C1121.37 (17)N—C7—C1118.78 (15)
C3—C2—C1119.42 (17)N—C8—C8i112.0 (2)
C4—C3—C2120.98 (19)N—C8—H8A109.2
C4—C3—H3119.5C8i—C8—H8A109.2
C2—C3—H3119.5N—C8—H8B109.2
C3—C4—C5120.4 (2)C8i—C8—H8B109.2
C3—C4—H4119.8H8A—C8—H8B107.9
C5—C4—H4119.8
C6—C1—C2—O1178.94 (18)C2—C1—C6—C50.3 (3)
C7—C1—C2—O12.0 (3)C7—C1—C6—C5178.7 (2)
C6—C1—C2—C30.3 (3)C8—N—C7—O21.8 (3)
C7—C1—C2—C3178.77 (19)C8—N—C7—C1178.24 (17)
O1—C2—C3—C4179.4 (2)C6—C1—C7—O2173.61 (19)
C1—C2—C3—C40.2 (4)C2—C1—C7—O25.4 (3)
C2—C3—C4—C50.6 (4)C6—C1—C7—N6.5 (3)
C3—C4—C5—C60.6 (4)C2—C1—C7—N174.55 (17)
C4—C5—C6—C10.2 (4)C7—N—C8—C8i80.7 (3)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.762.495 (2)148
N—H0···O1ii0.862.212.993 (2)151
Symmetry code: (ii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC16H16N2O4
Mr300.31
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)4.6311 (3), 5.0435 (3), 15.2957 (9)
α, β, γ (°)89.091 (4), 83.315 (4), 85.956 (4)
V3)353.94 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.34 × 0.24 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionGaussian
(SADABS; Bruker, 2009)
Tmin, Tmax0.966, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
9142, 1535, 924
Rint0.033
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.143, 1.01
No. of reflections1535
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.16

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.762.495 (2)148
N—H0···O1i0.862.212.993 (2)151
Symmetry code: (i) x+1, y1, z.
 

Acknowledgements

The authors gratefully acknowledge Professor Manfredo Hörner, Department of Chemistry, Universidade Federal de Santa Maria, Brazil, for his support and help with the X-ray measurements. They also thank PRONEX FAPERGS/CNPq 10/0009–2 and PRONEM FAPERGS/CNPq 11/2026–4 for funding this study.

References

First citationApurba, K., Patra, A. K., Olmstead, M. M. & Mascharak, P. K. (2002). Inorg. Chem. 41, 5403–5409.  Web of Science PubMed Google Scholar
First citationBooysen, I., Gerber, T. I. A., Hosten, E. & Mayer, P. (2009). Acta Cryst. E65, o850.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFry, N. L., Rose, M. J., Rogow, D. L., Nyitray, C., Kaur, M. & Mascharak, P. K. (2010). Inorg. Chem. 49, 1487–1495.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, H. Y., Wang, K., Fu, H. Y., Yuan, M. L. & Chen, H. (2011). Chin. Chem. Lett. 22, 738–740.  Web of Science CrossRef CAS Google Scholar
First citationMaurya, M. R., Titinchi, S. J. J. & Chand, S. (2003). Catal. Lett. 89, 219–227.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds