organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o249-o250

3′′-(2-Fluoro­benzyl­­idene)-4′-(2-fluoro­phen­yl)-1′-methyl­di­spiro­[ace­naphthyl­ene-1,2′-pyrrolidine-3′,1′′-cyclo­penta­ne]-2,2′′-dione

aWenzhou Medical College, School of Pharmacy, Wenzhou 325035, People's Republic of China
*Correspondence e-mail: proflxk@163.com

(Received 3 December 2012; accepted 21 December 2012; online 19 January 2013)

In the title compound, C33H25F2NO2, the acenaphthene ring system forms dihedral angles of 50.93 (14) and 36.89 (14)° with the benzene rings. The pyrrolidine and cyclo­penta­none rings adopt envelope (with the N atom as the flap) and twisted conformations, respectively. In the crystal, C—H⋯O and C—H⋯F inter­actions link the mol­ecules.

Related literature

For related structures, see: Abdul Ajees et al. (2002[Abdul Ajees, A., Manikandan, S. & Raghunathan, R. (2002). Acta Cryst. E58, o802-o804.]); Usha et al. (2003[Usha, G., Selvanayagam, S., Yogavel, M., Velmurugan, D., Amalraj, A., Raghunathan, R., Shanmuga Sundara Raj, S. & Fun, H.-K. (2003). Acta Cryst. E59, o1572-o1574.]). For background to the biological properties of spiro-pyrrolidine derivatives, see: Chande et al. (2005[Chande, M. S., Verma, R. S., Barve, P. A. & Khanwelkar, R. R. (2005). Eur. J. Med. Chem. 40, 1143-1148.]); Dandia et al. (2003[Dandia, A., Sati, M., Arya, K., Sharma, R. & Loupy, A. (2003). Chem. Pharm. Bull. 51, 1137-1141.]); Cravotto et al. (2001[Cravotto, G., Giovenzana, G. B., Pilati, T., Sisti, M. & Palmisano, G. (2001). J. Org. Chem. 66, 8447-8453.]); Winfred et al. (2000[Winfred, G. B., Rutger, M. & Fieseler, F. (2000). J. Org. Chem. 65, 8317-8320.]); Metwally et al. (1998[Metwally, K. A., Dukat, M. & Egan, C. T. (1998). J. Med. Chem. 41, 5084-5093.]); Suenaga et al. (2001[Suenaga, K., Araki, K. & Sengoku, T. (2001). Org. Lett. 3, 527-529.]). For the synthesis of the title compound, see: Kumar et al. (2008a[Kumar, R. R., Perumal, S., Senthilkumar, P., Yogeeswari, P. & Sriram, D. (2008a). Tetrahedron, 64, 2962-2971.],b[Kumar, R. R., Perumal, S., Senthilkumar, P., Yogeeswari, P. & Sriram, D. (2008b). J. Med. Chem. 51, 5731-5735.]); Liang et al. (2009[Liang, G., Shao, L. L., Wang, Y., Zhao, C. G., Chu, Y. H., Xiao, J., Zhao, Y., Li, X. K. & Yang, S. L. (2009). Bioorg. Med. Chem. 17, 2623-2631.]).

[Scheme 1]

Experimental

Crystal data
  • C33H25F2NO2

  • Mr = 505.54

  • Orthorhombic, P c a 21

  • a = 17.728 (13) Å

  • b = 12.272 (9) Å

  • c = 12.094 (8) Å

  • V = 2631 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.45 × 0.38 × 0.27 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.641, Tmax = 1.000

  • 12188 measured reflections

  • 2500 independent reflections

  • 2072 reflections with I > 2σ(I)

  • Rint = 0.123

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.126

  • S = 1.02

  • 2500 reflections

  • 344 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O1i 0.97 2.35 3.317 (5) 172
C14—H14A⋯F2ii 0.93 2.43 3.212 (7) 141
C25—H25⋯O2iii 0.93 2.58 3.458 (7) 158
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+1, z]; (iii) x, y-1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Spiro-pyrrolidine compounds find applications in the synthesis of biologically active compounds. The synthesis of spiro compounds has drawn considerable attention of chemists, in view of their wide spectrum of pharmacological properties (Chande et al., 2005; Dandia et al., 2003; Cravotto et al., 2001; Winfred et al., 2000; Metwally et al., 1998; Suenaga et al., 2001). In the present study, the 1,3-dipolar cycloaddition of an azomethine ylide generated in situ from acenaphthenequinone and sarcosine to novel mono-carbonyl analogue of curcumin containg cyclopentanone afforded the title compound (Kumar et al., 2008; Liang et al., 2009). With this background, and in continuation of our structural analysis of spiro-pyrrolidine derivatives, the X-ray crystal structure determination of the title compound, (I), was undertaken.

The bond lengths and angles in the pyrrolidine ring are slightly larger than normal values because of bulky substituents on the pyrrolidine moiety. A similar effect has been observed in related reported structures (Abdul Ajees et al., 2002; Usha et al., 2003). The sum of the angles at atom N1 [339.1 (11)°] is in accordance with sp3-hybridization. The dihedral angles between the acenaphthene ring system and phenyl rings C21—C26 and C27—C32 are 50.93 (14)° and 36.89 (14)° respectively, while that between the two phenyl-ring substituents is 87.55 (17)°. The pyrrolidine and cyclopentanone ring both adopt an envelope conformation. In addition to van der Waals interactions, the crystal structure is stabilized by C—H···O and C—H···F intramolecular interactions. In the present study, the 1,3-dipolar cycloaddition of an azomethine ylide generated in situ from acenaphthenequinone and sarcosine to novel mono-carbonyl analogue of curcumin containg cyclopentanone afforded title compound.

Related literature top

For related structures, see: Abdul Ajees et al. (2002); Usha et al. (2003). For background to the biological properties of spiro-pyrrolidine derivatives, see: Chande et al. (2005); Dandia et al. (2003); Cravotto et al. (2001); Winfred et al. (2000); Metwally et al. (1998); Suenaga et al. (2001). For the synthesis of the title compound, see: Kumar et al. (2008a,b); Liang et al. (2009).

Experimental top

A mixture of (2E,5E)-2,5-bis(2-fluorobenzylidene)cyclopentanone (1 mmol), (Liang et al., 2009), acenaphthenequinone (0.182 g, 1 mmol), and sarcosine (0.089 g, 1 mmol) was dissolved in methanol (10 mL) and refluxed for 1 h. After completion of the reaction as evident from TLC, the mixture was cooled to room temperature and poured into cold water (50 mL). The precipitate was filtered and washed with water to obtain pure product as a yellow solid (79.6% yield, mp 93.2–95.0°C). Single crystals were grown in an ethyl acetate/CH2Cl2 mixture (2:1ν/ν).

Refinement top

The H(C) atom positions were calculated. The H atoms bound to C were positioned geometrically and allowed to ride on their parent atoms at distances of 0.96 Å (RCH3), 0.97 Å (R2CH2), 0.98 Å (R3CH), 0.93 Å (R2CH), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3) of the attached atom.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% displacement ellipsoids for the non-hydrogen atoms. Hydrogen atoms are drawn as spheres of arbitrary radius.
3''-(2-Fluorobenzylidene)-4'-(2-fluorophenyl)-1'-methyldispiro[acenaphthylene- 1,2'-pyrrolidine-3',1''-cyclopentane]-2,2''-dione top
Crystal data top
C33H25F2NO2F(000) = 1052
Mr = 505.54Dx = 1.274 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 3224 reflections
a = 17.728 (13) Åθ = 4.6–41.9°
b = 12.272 (9) ŵ = 0.09 mm1
c = 12.094 (8) ÅT = 293 K
V = 2631 (3) Å3Prismatic, yellow
Z = 40.45 × 0.38 × 0.27 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2500 independent reflections
Radiation source: fine-focus sealed tube2072 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.123
ϕ and ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 2120
Tmin = 0.641, Tmax = 1.000k = 1410
12188 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0837P)2]
where P = (Fo2 + 2Fc2)/3
2500 reflections(Δ/σ)max < 0.001
344 parametersΔρmax = 0.24 e Å3
13 restraintsΔρmin = 0.32 e Å3
Crystal data top
C33H25F2NO2V = 2631 (3) Å3
Mr = 505.54Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 17.728 (13) ŵ = 0.09 mm1
b = 12.272 (9) ÅT = 293 K
c = 12.094 (8) Å0.45 × 0.38 × 0.27 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2500 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2072 reflections with I > 2σ(I)
Tmin = 0.641, Tmax = 1.000Rint = 0.123
12188 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05513 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.02Δρmax = 0.24 e Å3
2500 reflectionsΔρmin = 0.32 e Å3
344 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.1562 (3)0.1946 (2)0.9893 (3)0.1212 (15)
F20.37848 (15)0.7382 (2)1.1356 (2)0.0723 (8)
O10.20514 (17)0.54755 (19)1.1294 (2)0.0503 (7)
O20.08624 (18)0.9035 (2)0.9244 (3)0.0656 (9)
N10.0970 (2)0.7803 (3)1.1430 (3)0.0494 (8)
C10.1917 (2)0.5827 (3)1.0368 (3)0.0351 (8)
C20.1848 (2)0.5181 (3)0.9340 (3)0.0367 (8)
C30.1787 (2)0.5964 (3)0.8387 (3)0.0390 (8)
H3A0.12720.60070.81200.047*
H3B0.21130.57450.77830.047*
C40.2041 (2)0.7055 (2)0.8874 (3)0.0351 (8)
H4A0.18020.76550.84860.042*
H4B0.25830.71350.88120.042*
C50.18001 (19)0.7045 (2)1.0097 (3)0.0329 (7)
C60.2244 (2)0.7800 (3)1.0916 (3)0.0376 (8)
H60.24610.73241.14830.045*
C70.1640 (2)0.8486 (3)1.1487 (3)0.0515 (10)
H7A0.17770.86361.22490.062*
H7B0.15620.91701.11030.062*
C80.0945 (2)0.7332 (3)1.0318 (3)0.0376 (8)
C90.0633 (2)0.8121 (3)0.9403 (3)0.0460 (9)
C100.0007 (2)0.7571 (4)0.8828 (3)0.0520 (11)
C110.0125 (2)0.6583 (3)0.9373 (3)0.0501 (10)
C120.0375 (2)0.6408 (3)1.0259 (3)0.0467 (9)
C130.0260 (3)0.5518 (4)1.0922 (4)0.0690 (13)
H140.05630.54001.15380.083*
C140.0322 (4)0.4789 (5)1.0659 (6)0.0884 (17)
H14A0.03900.41821.11090.106*
C150.0788 (3)0.4923 (4)0.9792 (6)0.093 (2)
H150.11580.44070.96460.112*
C160.0713 (3)0.5851 (4)0.9099 (4)0.0718 (14)
C170.1165 (3)0.6177 (6)0.8195 (6)0.094 (2)
H170.15590.57310.79670.113*
C180.1034 (3)0.7133 (7)0.7648 (5)0.098 (2)
H180.13390.73090.70480.118*
C190.0455 (3)0.7867 (4)0.7954 (4)0.0719 (15)
H190.03870.85230.75820.086*
C200.1819 (2)0.4093 (3)0.9397 (3)0.0430 (8)
H210.18490.38111.01090.052*
C210.1747 (2)0.3280 (3)0.8532 (3)0.0452 (9)
C220.1803 (3)0.3482 (3)0.7384 (3)0.0562 (11)
H220.18590.41960.71400.067*
C230.1776 (3)0.2659 (4)0.6621 (4)0.0689 (14)
H230.18200.28240.58730.083*
C240.1685 (3)0.1603 (4)0.6939 (5)0.0726 (14)
H240.16780.10480.64150.087*
C250.1604 (4)0.1365 (4)0.8058 (5)0.0829 (18)
H250.15280.06520.82940.099*
C260.1639 (3)0.2197 (3)0.8797 (4)0.0676 (14)
C270.2887 (2)0.8456 (3)1.0442 (3)0.0374 (8)
C280.2768 (3)0.9352 (3)0.9739 (3)0.0533 (11)
H280.22780.95560.95590.064*
C290.3368 (3)0.9934 (3)0.9313 (4)0.0632 (12)
H290.32741.05220.88490.076*
C300.4090 (3)0.9666 (4)0.9558 (4)0.0647 (13)
H300.44851.00700.92630.078*
C310.4239 (3)0.8797 (4)1.0239 (4)0.0614 (11)
H310.47310.85981.04120.074*
C320.3623 (2)0.8225 (3)1.0661 (3)0.0457 (9)
C330.0275 (3)0.8304 (4)1.1823 (4)0.0793 (15)
H33A0.03250.84791.25930.119*
H33B0.01360.78051.17240.119*
H33C0.01790.89581.14100.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.251 (5)0.0477 (15)0.0652 (18)0.031 (2)0.035 (2)0.0173 (15)
F20.0645 (19)0.0727 (17)0.0798 (18)0.0172 (13)0.0031 (14)0.0249 (15)
O10.078 (2)0.0374 (14)0.0354 (13)0.0033 (12)0.0117 (13)0.0106 (11)
O20.073 (2)0.0410 (16)0.082 (2)0.0067 (14)0.0102 (17)0.0123 (16)
N10.050 (2)0.060 (2)0.0389 (16)0.0045 (15)0.0072 (14)0.0143 (15)
C10.041 (2)0.0303 (17)0.0343 (18)0.0005 (14)0.0016 (15)0.0056 (15)
C20.043 (2)0.0327 (18)0.0347 (17)0.0015 (14)0.0011 (15)0.0035 (15)
C30.057 (3)0.0307 (18)0.0296 (16)0.0015 (15)0.0021 (16)0.0000 (14)
C40.045 (2)0.0305 (17)0.0303 (16)0.0003 (14)0.0002 (14)0.0042 (14)
C50.039 (2)0.0298 (17)0.0298 (16)0.0002 (14)0.0024 (14)0.0003 (14)
C60.046 (2)0.0338 (17)0.0326 (16)0.0041 (14)0.0044 (16)0.0004 (14)
C70.058 (3)0.054 (2)0.043 (2)0.0043 (18)0.0014 (18)0.0198 (19)
C80.041 (2)0.0350 (18)0.0366 (17)0.0028 (14)0.0019 (16)0.0044 (15)
C90.052 (3)0.039 (2)0.046 (2)0.0113 (17)0.0017 (19)0.0034 (17)
C100.049 (3)0.063 (3)0.045 (2)0.0167 (19)0.0042 (19)0.0184 (19)
C110.044 (2)0.054 (2)0.053 (2)0.0005 (16)0.0025 (19)0.024 (2)
C120.043 (2)0.045 (2)0.052 (2)0.0027 (16)0.0068 (19)0.0049 (18)
C130.057 (3)0.068 (3)0.082 (3)0.012 (2)0.017 (2)0.017 (3)
C140.075 (4)0.076 (4)0.114 (5)0.032 (3)0.013 (4)0.007 (3)
C150.078 (4)0.069 (3)0.133 (5)0.038 (3)0.027 (4)0.028 (4)
C160.047 (3)0.086 (4)0.082 (3)0.005 (2)0.001 (2)0.043 (3)
C170.067 (4)0.115 (5)0.101 (5)0.001 (3)0.019 (3)0.060 (4)
C180.077 (4)0.149 (6)0.069 (4)0.031 (4)0.037 (3)0.055 (4)
C190.071 (4)0.094 (4)0.050 (2)0.031 (3)0.014 (2)0.018 (2)
C200.055 (2)0.0339 (19)0.0407 (18)0.0037 (15)0.0023 (17)0.0052 (16)
C210.048 (2)0.035 (2)0.053 (2)0.0003 (16)0.0060 (18)0.0006 (17)
C220.073 (3)0.043 (2)0.052 (2)0.016 (2)0.004 (2)0.0028 (19)
C230.080 (4)0.068 (3)0.058 (3)0.020 (2)0.009 (2)0.018 (2)
C240.081 (4)0.057 (3)0.080 (4)0.011 (2)0.018 (3)0.032 (3)
C250.131 (5)0.032 (2)0.085 (4)0.004 (2)0.040 (3)0.004 (3)
C260.109 (4)0.035 (2)0.059 (3)0.004 (2)0.024 (3)0.008 (2)
C270.048 (2)0.0332 (18)0.0313 (16)0.0048 (14)0.0008 (15)0.0074 (15)
C280.067 (3)0.040 (2)0.052 (2)0.0045 (18)0.006 (2)0.0060 (18)
C290.090 (4)0.038 (2)0.061 (3)0.022 (2)0.003 (3)0.002 (2)
C300.083 (4)0.061 (3)0.050 (3)0.037 (2)0.009 (2)0.011 (2)
C310.050 (3)0.073 (3)0.061 (3)0.005 (2)0.004 (2)0.009 (2)
C320.053 (3)0.040 (2)0.044 (2)0.0025 (17)0.0018 (18)0.0059 (17)
C330.058 (3)0.106 (4)0.074 (3)0.000 (3)0.014 (3)0.039 (3)
Geometric parameters (Å, º) top
F1—C261.368 (6)C14—H14A0.9300
F2—C321.362 (5)C15—C161.421 (8)
O1—C11.224 (4)C15—H150.9300
O2—C91.209 (5)C16—C171.413 (9)
N1—C71.455 (5)C17—C181.367 (9)
N1—C331.456 (6)C17—H170.9300
N1—C81.465 (5)C18—C191.415 (8)
C1—C21.478 (5)C18—H180.9300
C1—C51.545 (5)C19—H190.9300
C2—C201.338 (5)C20—C211.451 (5)
C2—C31.505 (5)C20—H210.9300
C3—C41.530 (5)C21—C261.380 (6)
C3—H3A0.9700C21—C221.414 (6)
C3—H3B0.9700C22—C231.369 (6)
C4—C51.539 (5)C22—H220.9300
C4—H4A0.9700C23—C241.361 (7)
C4—H4B0.9700C23—H230.9300
C5—C61.568 (5)C24—C251.392 (8)
C5—C81.580 (5)C24—H240.9300
C6—C271.508 (5)C25—C261.359 (6)
C6—C71.527 (5)C25—H250.9300
C6—H60.9800C27—C321.362 (5)
C7—H7A0.9700C27—C281.405 (5)
C7—H7B0.9700C28—C291.381 (6)
C8—C121.520 (5)C28—H280.9300
C8—C91.571 (5)C29—C301.353 (7)
C9—C101.473 (6)C29—H290.9300
C10—C191.386 (6)C30—C311.373 (7)
C10—C111.400 (6)C30—H300.9300
C11—C121.408 (6)C31—C321.395 (6)
C11—C161.415 (6)C31—H310.9300
C12—C131.370 (6)C33—H33A0.9600
C13—C141.402 (7)C33—H33B0.9600
C13—H140.9300C33—H33C0.9600
C14—C151.344 (10)
C7—N1—C33115.6 (3)C13—C14—H14A118.3
C7—N1—C8107.2 (3)C14—C15—C16120.1 (5)
C33—N1—C8116.1 (4)C14—C15—H15120.0
O1—C1—C2126.6 (3)C16—C15—H15120.0
O1—C1—C5124.1 (3)C17—C16—C11114.8 (6)
C2—C1—C5109.3 (3)C17—C16—C15129.1 (5)
C20—C2—C1119.7 (3)C11—C16—C15116.0 (5)
C20—C2—C3132.3 (3)C18—C17—C16121.4 (5)
C1—C2—C3107.9 (3)C18—C17—H17119.3
C2—C3—C4104.1 (3)C16—C17—H17119.3
C2—C3—H3A110.9C17—C18—C19122.9 (5)
C4—C3—H3A110.9C17—C18—H18118.6
C2—C3—H3B110.9C19—C18—H18118.6
C4—C3—H3B110.9C10—C19—C18117.5 (6)
H3A—C3—H3B109.0C10—C19—H19121.3
C3—C4—C5106.3 (3)C18—C19—H19121.3
C3—C4—H4A110.5C2—C20—C21130.8 (3)
C5—C4—H4A110.5C2—C20—H21114.6
C3—C4—H4B110.5C21—C20—H21114.6
C5—C4—H4B110.5C26—C21—C22113.9 (4)
H4A—C4—H4B108.7C26—C21—C20120.5 (4)
C4—C5—C1100.0 (3)C22—C21—C20125.5 (4)
C4—C5—C6117.6 (3)C23—C22—C21122.1 (4)
C1—C5—C6111.8 (3)C23—C22—H22119.0
C4—C5—C8115.3 (3)C21—C22—H22119.0
C1—C5—C8108.0 (3)C24—C23—C22121.0 (5)
C6—C5—C8104.1 (3)C24—C23—H23119.5
C27—C6—C7114.1 (3)C22—C23—H23119.5
C27—C6—C5117.0 (3)C23—C24—C25119.2 (4)
C7—C6—C5105.1 (3)C23—C24—H24120.4
C27—C6—H6106.7C25—C24—H24120.4
C7—C6—H6106.7C26—C25—C24118.4 (5)
C5—C6—H6106.7C26—C25—H25120.8
N1—C7—C6103.5 (3)C24—C25—H25120.8
N1—C7—H7A111.1C25—C26—F1117.6 (4)
C6—C7—H7A111.1C25—C26—C21125.3 (4)
N1—C7—H7B111.1F1—C26—C21117.1 (4)
C6—C7—H7B111.1C32—C27—C28115.1 (3)
H7A—C7—H7B109.0C32—C27—C6122.6 (3)
N1—C8—C12110.9 (3)C28—C27—C6122.2 (3)
N1—C8—C9114.5 (3)C29—C28—C27120.9 (4)
C12—C8—C9101.2 (3)C29—C28—H28119.5
N1—C8—C5102.4 (3)C27—C28—H28119.5
C12—C8—C5117.6 (3)C30—C29—C28121.4 (4)
C9—C8—C5110.9 (3)C30—C29—H29119.3
O2—C9—C10127.2 (4)C28—C29—H29119.3
O2—C9—C8124.4 (4)C29—C30—C31120.1 (4)
C10—C9—C8108.4 (3)C29—C30—H30119.9
C19—C10—C11119.2 (5)C31—C30—H30119.9
C19—C10—C9133.2 (5)C30—C31—C32117.4 (4)
C11—C10—C9107.5 (3)C30—C31—H31121.3
C10—C11—C12112.7 (3)C32—C31—H31121.3
C10—C11—C16124.2 (4)C27—C32—F2118.7 (3)
C12—C11—C16123.1 (4)C27—C32—C31125.0 (4)
C13—C12—C11118.3 (4)F2—C32—C31116.3 (4)
C13—C12—C8131.8 (4)N1—C33—H33A109.5
C11—C12—C8109.9 (3)N1—C33—H33B109.5
C12—C13—C14119.1 (5)H33A—C33—H33B109.5
C12—C13—H14120.5N1—C33—H33C109.5
C14—C13—H14120.5H33A—C33—H33C109.5
C15—C14—C13123.4 (5)H33B—C33—H33C109.5
C15—C14—H14A118.3
O1—C1—C2—C2010.5 (6)C16—C11—C12—C133.8 (6)
C5—C1—C2—C20170.2 (3)C10—C11—C12—C83.1 (5)
O1—C1—C2—C3172.3 (4)C16—C11—C12—C8179.1 (4)
C5—C1—C2—C37.0 (4)N1—C8—C12—C1349.0 (5)
C20—C2—C3—C4168.1 (4)C9—C8—C12—C13170.8 (4)
C1—C2—C3—C415.2 (4)C5—C8—C12—C1368.3 (6)
C2—C3—C4—C532.0 (4)N1—C8—C12—C11127.7 (3)
C3—C4—C5—C134.8 (4)C9—C8—C12—C115.8 (4)
C3—C4—C5—C6156.0 (3)C5—C8—C12—C11115.1 (3)
C3—C4—C5—C880.6 (3)C11—C12—C13—C143.4 (6)
O1—C1—C5—C4153.6 (4)C8—C12—C13—C14179.9 (5)
C2—C1—C5—C425.7 (3)C12—C13—C14—C151.0 (9)
O1—C1—C5—C628.4 (5)C13—C14—C15—C161.3 (10)
C2—C1—C5—C6150.9 (3)C10—C11—C16—C171.4 (6)
O1—C1—C5—C885.5 (4)C12—C11—C16—C17178.9 (4)
C2—C1—C5—C895.2 (3)C10—C11—C16—C15176.1 (4)
C4—C5—C6—C271.6 (4)C12—C11—C16—C151.5 (6)
C1—C5—C6—C27113.3 (3)C14—C15—C16—C17175.9 (6)
C8—C5—C6—C27130.4 (3)C14—C15—C16—C111.0 (8)
C4—C5—C6—C7126.1 (3)C11—C16—C17—C180.4 (8)
C1—C5—C6—C7119.0 (3)C15—C16—C17—C18176.6 (6)
C8—C5—C6—C72.7 (3)C16—C17—C18—C191.2 (9)
C33—N1—C7—C6174.1 (4)C11—C10—C19—C181.0 (6)
C8—N1—C7—C642.8 (4)C9—C10—C19—C18177.1 (4)
C27—C6—C7—N1155.9 (3)C17—C18—C19—C101.9 (8)
C5—C6—C7—N126.4 (4)C1—C2—C20—C21179.5 (4)
C7—N1—C8—C12166.6 (3)C3—C2—C20—C213.0 (7)
C33—N1—C8—C1262.4 (5)C2—C20—C21—C26172.3 (4)
C7—N1—C8—C979.7 (4)C2—C20—C21—C229.8 (7)
C33—N1—C8—C951.3 (5)C26—C21—C22—C232.1 (7)
C7—N1—C8—C540.4 (4)C20—C21—C22—C23175.8 (4)
C33—N1—C8—C5171.4 (4)C21—C22—C23—C240.7 (7)
C4—C5—C8—N1151.9 (3)C22—C23—C24—C251.3 (8)
C1—C5—C8—N197.2 (3)C23—C24—C25—C261.7 (9)
C6—C5—C8—N121.7 (3)C24—C25—C26—F1179.6 (6)
C4—C5—C8—C1286.3 (4)C24—C25—C26—C210.2 (9)
C1—C5—C8—C1224.6 (4)C22—C21—C26—C251.7 (7)
C6—C5—C8—C12143.5 (3)C20—C21—C26—C25176.4 (5)
C4—C5—C8—C929.4 (4)C22—C21—C26—F1178.5 (5)
C1—C5—C8—C9140.2 (3)C20—C21—C26—F13.4 (7)
C6—C5—C8—C9100.8 (3)C7—C6—C27—C32128.5 (4)
N1—C8—C9—O251.8 (5)C5—C6—C27—C32108.3 (4)
C12—C8—C9—O2171.1 (4)C7—C6—C27—C2851.5 (4)
C5—C8—C9—O263.4 (4)C5—C6—C27—C2871.7 (4)
N1—C8—C9—C10125.9 (3)C32—C27—C28—C290.3 (5)
C12—C8—C9—C106.6 (4)C6—C27—C28—C29179.7 (4)
C5—C8—C9—C10118.9 (3)C27—C28—C29—C300.2 (7)
O2—C9—C10—C194.0 (7)C28—C29—C30—C310.2 (7)
C8—C9—C10—C19178.4 (4)C29—C30—C31—C320.4 (6)
O2—C9—C10—C11172.4 (4)C28—C27—C32—F2178.6 (3)
C8—C9—C10—C115.2 (4)C6—C27—C32—F21.4 (5)
C19—C10—C11—C12178.4 (4)C28—C27—C32—C310.6 (5)
C9—C10—C11—C121.4 (5)C6—C27—C32—C31179.5 (3)
C19—C10—C11—C160.7 (6)C30—C31—C32—C270.6 (6)
C9—C10—C11—C16176.4 (4)C30—C31—C32—F2178.5 (3)
C10—C11—C12—C13174.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O1i0.972.353.317 (5)172
C14—H14A···F2ii0.932.433.212 (7)141
C25—H25···O2iii0.932.583.458 (7)158
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x1/2, y+1, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC33H25F2NO2
Mr505.54
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)17.728 (13), 12.272 (9), 12.094 (8)
V3)2631 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.38 × 0.27
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.641, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12188, 2500, 2072
Rint0.123
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.126, 1.02
No. of reflections2500
No. of parameters344
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.32

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O1i0.972.353.317 (5)172
C14—H14A···F2ii0.932.433.212 (7)141
C25—H25···O2iii0.932.583.458 (7)158
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x1/2, y+1, z; (iii) x, y1, z.
 

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (grant Nos. LY12H16003 and Y4110197) and the Project of Wenzhou Science & Technology Bureau (Y20100273). The X-ray crystallographic facility at the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, is gratefully acknowledged for the data collection.

References

First citationAbdul Ajees, A., Manikandan, S. & Raghunathan, R. (2002). Acta Cryst. E58, o802–o804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChande, M. S., Verma, R. S., Barve, P. A. & Khanwelkar, R. R. (2005). Eur. J. Med. Chem. 40, 1143–1148.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCravotto, G., Giovenzana, G. B., Pilati, T., Sisti, M. & Palmisano, G. (2001). J. Org. Chem. 66, 8447–8453.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDandia, A., Sati, M., Arya, K., Sharma, R. & Loupy, A. (2003). Chem. Pharm. Bull. 51, 1137–1141.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKumar, R. R., Perumal, S., Senthilkumar, P., Yogeeswari, P. & Sriram, D. (2008a). Tetrahedron, 64, 2962–2971.  Web of Science CrossRef CAS Google Scholar
First citationKumar, R. R., Perumal, S., Senthilkumar, P., Yogeeswari, P. & Sriram, D. (2008b). J. Med. Chem. 51, 5731–5735.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiang, G., Shao, L. L., Wang, Y., Zhao, C. G., Chu, Y. H., Xiao, J., Zhao, Y., Li, X. K. & Yang, S. L. (2009). Bioorg. Med. Chem. 17, 2623–2631.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMetwally, K. A., Dukat, M. & Egan, C. T. (1998). J. Med. Chem. 41, 5084–5093.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuenaga, K., Araki, K. & Sengoku, T. (2001). Org. Lett. 3, 527–529.  Web of Science CrossRef PubMed CAS Google Scholar
First citationUsha, G., Selvanayagam, S., Yogavel, M., Velmurugan, D., Amalraj, A., Raghunathan, R., Shanmuga Sundara Raj, S. & Fun, H.-K. (2003). Acta Cryst. E59, o1572–o1574.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWinfred, G. B., Rutger, M. & Fieseler, F. (2000). J. Org. Chem. 65, 8317–8320.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o249-o250
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds