organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[8-(4-Phen­­oxy­benzo­yl)-2,7-bis­­(propan-2-yl­­oxy)naphthalen-1-yl](4-phen­­oxy­phen­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 5 December 2012; accepted 10 January 2013; online 16 January 2013)

The entire title mol­ecule, C42H36O6, is completed by the application of a twofold axis. The 4-phen­oxy­benzoyl groups at the 1- and 8-positions of the naphthalene ring system are aligned almost anti­parallel. The dihedral angle between the best planes of the benzene rings of the benzoyl moieties and the naphthalene ring system is 70.52 (5)° and that between the best planes of the benzene rings of the phen­oxy groups and the naphthalene ring system is 27.80 (6)°. In the crystal, mol­ecules are linked into a three-dimensional architecture by C—H⋯O and C—H⋯π inter­actions.

Related literature

For electrophilic aromatic aroylation of the naphthalene core, see; Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the structures of closely related compounds, see: Hijikata et al. (2010[Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902-o2903.]); Sasagawa et al. (2012[Sasagawa, K., Hijikata, D., Sakamoto, R., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2596.]); Muto et al. (2010[Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.]); Nakaema et al. (2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]).

[Scheme 1]

Experimental

Crystal data
  • C42H36O6

  • Mr = 636.71

  • Monoclinic, C 2/c

  • a = 22.7084 (4) Å

  • b = 10.3582 (2) Å

  • c = 14.7152 (3) Å

  • β = 100.106 (1)°

  • V = 3407.58 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.66 mm−1

  • T = 193 K

  • 0.60 × 0.60 × 0.50 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.693, Tmax = 0.734

  • 28911 measured reflections

  • 3101 independent reflections

  • 2749 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.04

  • 3101 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.95 2.44 3.3398 (15) 158
C16—H16⋯Cgii 0.95 2.97 3.8383 (19) 152
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+2.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of the naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the choice of suitable acidic mediators (Okamoto & Yonezawa, 2009 Okamoto et al., 2011). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by 1,8-dibenzoyl-2,7-dimethoxynaphtalene (Nakaema et al., 2008), [2,7-dimethoxy-8-(4-propylbenzoyl)naphthalene-1-yl]-(4-propylphenyl)methanone (Sasagawa et al., 2012) and [2,7-dimethoxy-8-(4-methylbenzoyl)-1-naphthyl](4-methylphenyl)methanone (Muto et al. 2010). In the crystals of these compounds, two aroyl groups tend to attach to the naphthalene ring in nearly perpendicular manners and oriented in the opposite direction (anti-orientation). Recently, the crystal structure of 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene has been clarified to take syn-orientation, where two phenoxybenzoyl groups are positioned on the same side against the naphthalene ring plane (Hijikata et al. 2010). As a part of our continuing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound peri-aroylnaphthalene bearing isopropoxy groups at the 2,7-positions is discussed in this article.

The molecular structure of the title compounds is displayed in Fig 1. Two 4-phenoxybenzoyl groups are situated in anti-orientation and are twisted away from the attached naphthalene ring. This molecule lies on a crystallographic 2-fold axis so that the asymmetric unit consists of one-half of the molecule. The dihedral angle between the best plane of the inner benzene ring of the 4-phenoxybenzoyl groups and the naphthalene system is 70.52 (5)°.

Centrosymmetrically related molecules are linked into dimeric unit by pairs of C—H···π interactions between the hydrogen atom (H16) on the terminal phenoxy group and the π-system of the benzene ring in the benzoyl moiety (C8–C13) (C16—H16···Cgiii, Fig. 2). The molecules of the title compound are aligned in an antiparallel fashion with the adjacent molecule. The terminal benzene ring of the phenoxybenzoyl group interacts with the inner benzene ring of the phenoxybenzoyl group of the adjacent molecule. Both of the pairs of the facing benzene rings in the couple of the phenoxybenzoyl groups are situated almost perpendicularly to the benzene ring in the benzoyl moiety (C8–C13). Then two identical interactions are formed to give cyclic structure between the two phenoxybenzoyl groups.

Furthermore, an oxygen atom of the carbonyl group forms intermolecular C—H···O interaction with the m-hydrogen of the benzoyl benzene ring of the other adjacent molecule (C12—H12···O1 = 2.44 Å, Fig. 3).

Related literature top

For electrophilic aromatic aroylation of the naphthalene core, see; Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Hijikata et al. (2010); Sasagawa et al. (2012); Muto et al. (2010); Nakaema et al. (2008);

Experimental top

1,8-(4-phenoxybenzoyl)-2,7-dihydroxynaphtalene (0.3 mmol, 157 mg), tetrabutylammonium iodide (0.03 mmol, 113 mg), potassium carbonate (0.9 mmol, 127 mg) and DMF (0.75 ml) were placed into a 10 ml flask, followed by stirring at room temperature under nitrogen for 1 h. 2-Bromopropane (1.8 mmol, 224 mg) was to the solution and heated at 70 °C for 5 h. After cooling to room temperature, the reaction mixture was poured into ice-cold water (20 ml). The aqueous layer was extracted with ethyl acetate (20 ml × 2). The combined extracts were washed with 2 M aqueous NaOH followed by washing the brine. The extracts thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake (yield 22%). Colourless single crystals suitable for X-ray diffraction were obtained by repeated crystallization from methanol.

1H NMR δ (300 MHz, CDCl3): 1.04 (12H, d, J = 6.0 Hz), 4.51 (2H, sep, J = 6.0 Hz), 6.89 (4H, d, J = 8.1 Hz), 7.09 (4H, d, J = 8.1 Hz), 7.13 (2H, d, J = 9.0 Hz), 7.17 (2H, d, J = 8.1 Hz), 7.37 (4H, t, J = 8.1 Hz), 7.70 (4H, d, J = 8.1 Hz), 7.86 (2H, d, J = 9.0 Hz),

13C NMR δ (125 MHz, CDCl3): 21.6, 71.5, 113.1, 116.7, 120.0, 122.6, 124.1, 125.2, 129.8, 130.4, 131.3, 131.6, 134.3, 154.6, 155.8, 161.1, 196.0 p.p.m.

IR (KBr): 1656 (C=O), 1601, 1505, 1452 (Ar), 1267 (C—O—C) cm-1

HRMS (m/z): [M+H]+ called. for C42H37O6, 637.2581, found, 637.2590.

m.p. = 450.2–451.4 K

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C–H = 0.95 (aromatic), 0.98 (methyl) and 1.00 (methine) Å and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of compound (I), showing the intermolecular C—H···π interactions (dashed lines). Cg is the centroid of the C8—C13 ring. Symmetry code: (iii) 1 - x, -y, - z +2.
[Figure 3] Fig. 3. A partial packing diagram of compound (I), showing the C12–H12···O1 hydrogen interactions (dashed lines). Symmetry code: x, 1 - y, 1/2 + z.
[8-(4-Phenoxybenzoyl)-2,7-bis(propan-2-yloxy)naphthalen-1-yl](4- phenoxyphenyl)methanone top
Crystal data top
C42H36O6F(000) = 1344
Mr = 636.71Dx = 1.241 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54187 Å
Hall symbol: -C 2ycCell parameters from 26902 reflections
a = 22.7084 (4) Åθ = 3.1–68.3°
b = 10.3582 (2) ŵ = 0.66 mm1
c = 14.7152 (3) ÅT = 193 K
β = 100.106 (1)°Block, colorless
V = 3407.58 (11) Å30.60 × 0.60 × 0.50 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3101 independent reflections
Radiation source: rotaing anode2749 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.000 pixels mm-1θmax = 68.3°, θmin = 4.0°
ω scansh = 2727
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1212
Tmin = 0.693, Tmax = 0.734l = 1717
28911 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0477P)2 + 1.7648P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3101 reflectionsΔρmax = 0.21 e Å3
221 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00263 (12)
Crystal data top
C42H36O6V = 3407.58 (11) Å3
Mr = 636.71Z = 4
Monoclinic, C2/cCu Kα radiation
a = 22.7084 (4) ŵ = 0.66 mm1
b = 10.3582 (2) ÅT = 193 K
c = 14.7152 (3) Å0.60 × 0.60 × 0.50 mm
β = 100.106 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3101 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2749 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.734Rint = 0.029
28911 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.04Δρmax = 0.21 e Å3
3101 reflectionsΔρmin = 0.16 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43879 (4)0.44016 (8)0.67336 (6)0.0378 (2)
O20.34771 (4)0.63044 (8)0.78791 (7)0.0418 (3)
O30.40230 (5)0.16418 (9)1.04457 (6)0.0475 (3)
C30.50000.83092 (15)0.75000.0279 (4)
C80.42720 (5)0.40189 (11)0.82730 (8)0.0288 (3)
C70.43753 (5)0.48524 (11)0.74958 (8)0.0290 (3)
C20.50000.69308 (15)0.75000.0263 (3)
C50.39876 (6)0.83609 (12)0.78052 (9)0.0341 (3)
H50.36510.88340.79260.041*
C10.44642 (5)0.62900 (11)0.76338 (8)0.0281 (3)
C60.39740 (5)0.70012 (11)0.77734 (8)0.0317 (3)
C90.41352 (6)0.27221 (11)0.81026 (8)0.0312 (3)
H90.41040.23940.74930.037*
C130.43221 (6)0.44792 (11)0.91753 (8)0.0340 (3)
H130.44170.53620.93010.041*
C100.40443 (6)0.19034 (11)0.88074 (8)0.0326 (3)
H100.39470.10220.86830.039*
C110.40974 (6)0.23839 (12)0.96986 (8)0.0330 (3)
C120.42366 (6)0.36733 (12)0.98865 (9)0.0369 (3)
H120.42720.39961.04980.044*
C140.38932 (6)0.03327 (12)1.03096 (8)0.0374 (3)
C150.43487 (7)0.05536 (14)1.05092 (9)0.0429 (3)
H150.47500.02731.06990.052*
C200.28915 (6)0.68545 (14)0.75933 (11)0.0458 (4)
H200.28580.76640.79510.055*
C160.42179 (8)0.18549 (14)1.04313 (10)0.0509 (4)
H160.45300.24721.05760.061*
C190.33118 (7)0.00546 (14)1.00293 (11)0.0475 (4)
H190.29990.05630.98980.057*
C170.36410 (8)0.22609 (14)1.01469 (11)0.0554 (4)
H170.35530.31571.00920.066*
C180.31893 (8)0.13676 (16)0.99415 (12)0.0568 (4)
H180.27900.16500.97380.068*
C210.24694 (7)0.58531 (18)0.78572 (15)0.0677 (5)
H21A0.24910.50690.74920.102*
H21B0.20600.61900.77360.102*
H21C0.25830.56500.85150.102*
C220.27768 (9)0.7160 (2)0.65854 (14)0.0779 (6)
H22B0.30460.78520.64620.117*
H22C0.23610.74390.63980.117*
H22A0.28480.63880.62350.117*
C40.44890 (5)0.89855 (11)0.76600 (8)0.0310 (3)
H40.44960.99030.76670.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0591 (6)0.0264 (4)0.0288 (5)0.0060 (4)0.0102 (4)0.0024 (3)
O20.0344 (5)0.0291 (5)0.0639 (6)0.0017 (4)0.0141 (4)0.0045 (4)
O30.0838 (7)0.0299 (5)0.0307 (5)0.0094 (5)0.0151 (5)0.0025 (4)
C30.0356 (9)0.0225 (8)0.0252 (8)0.0000.0040 (7)0.000
C80.0332 (6)0.0226 (6)0.0307 (6)0.0009 (5)0.0062 (5)0.0004 (5)
C70.0330 (6)0.0238 (6)0.0300 (6)0.0019 (5)0.0047 (5)0.0010 (5)
C20.0356 (9)0.0211 (8)0.0217 (8)0.0000.0041 (6)0.000
C50.0372 (7)0.0263 (6)0.0402 (7)0.0041 (5)0.0102 (5)0.0019 (5)
C10.0368 (6)0.0215 (6)0.0260 (6)0.0007 (5)0.0053 (5)0.0009 (4)
C60.0351 (6)0.0264 (6)0.0342 (6)0.0033 (5)0.0079 (5)0.0005 (5)
C90.0414 (7)0.0249 (6)0.0282 (6)0.0028 (5)0.0082 (5)0.0030 (5)
C130.0459 (7)0.0220 (6)0.0339 (7)0.0032 (5)0.0071 (5)0.0037 (5)
C100.0445 (7)0.0203 (6)0.0336 (7)0.0039 (5)0.0091 (5)0.0015 (5)
C110.0424 (7)0.0276 (6)0.0299 (6)0.0008 (5)0.0090 (5)0.0036 (5)
C120.0528 (8)0.0301 (6)0.0280 (6)0.0022 (6)0.0079 (5)0.0035 (5)
C140.0569 (8)0.0298 (6)0.0274 (6)0.0047 (6)0.0120 (6)0.0054 (5)
C150.0485 (8)0.0450 (8)0.0350 (7)0.0007 (6)0.0067 (6)0.0031 (6)
C200.0350 (7)0.0392 (7)0.0631 (9)0.0008 (6)0.0086 (6)0.0002 (7)
C160.0712 (10)0.0380 (8)0.0445 (8)0.0107 (7)0.0131 (7)0.0081 (6)
C190.0496 (8)0.0442 (8)0.0497 (8)0.0024 (6)0.0114 (7)0.0080 (6)
C170.0856 (12)0.0317 (7)0.0525 (9)0.0101 (8)0.0222 (8)0.0046 (6)
C180.0566 (9)0.0569 (10)0.0590 (10)0.0201 (8)0.0159 (8)0.0014 (8)
C210.0414 (8)0.0627 (11)0.1020 (15)0.0074 (8)0.0205 (9)0.0098 (10)
C220.0671 (12)0.0893 (14)0.0687 (12)0.0250 (10)0.0120 (9)0.0140 (11)
C40.0408 (7)0.0190 (5)0.0332 (6)0.0015 (5)0.0064 (5)0.0017 (5)
Geometric parameters (Å, º) top
O1—C71.2198 (14)C11—C121.3891 (17)
O2—C61.3711 (14)C12—H120.9500
O2—C201.4401 (16)C14—C191.372 (2)
O3—C111.3760 (14)C14—C151.376 (2)
O3—C141.3947 (15)C15—C161.381 (2)
C3—C41.4101 (14)C15—H150.9500
C3—C4i1.4102 (14)C20—C221.494 (2)
C3—C21.428 (2)C20—C211.509 (2)
C8—C91.3916 (16)C20—H201.0000
C8—C131.3966 (17)C16—C171.370 (2)
C8—C71.4841 (16)C16—H160.9500
C7—C11.5116 (16)C19—C181.390 (2)
C2—C1i1.4295 (13)C19—H190.9500
C2—C11.4295 (13)C17—C181.375 (2)
C5—C41.3586 (17)C17—H170.9500
C5—C61.4094 (17)C18—H180.9500
C5—H50.9500C21—H21A0.9800
C1—C61.3800 (17)C21—H21B0.9800
C9—C101.3829 (17)C21—H21C0.9800
C9—H90.9500C22—H22B0.9800
C13—C121.3788 (18)C22—H22C0.9800
C13—H130.9500C22—H22A0.9800
C10—C111.3881 (17)C4—H40.9500
C10—H100.9500
C6—O2—C20119.65 (10)C19—C14—O3119.69 (13)
C11—O3—C14118.75 (10)C15—C14—O3119.09 (13)
C4—C3—C4i120.42 (15)C14—C15—C16119.40 (14)
C4—C3—C2119.79 (7)C14—C15—H15120.3
C4i—C3—C2119.79 (7)C16—C15—H15120.3
C9—C8—C13118.63 (11)O2—C20—C22111.41 (14)
C9—C8—C7118.90 (10)O2—C20—C21104.39 (12)
C13—C8—C7122.45 (10)C22—C20—C21113.15 (15)
O1—C7—C8121.21 (10)O2—C20—H20109.3
O1—C7—C1118.46 (10)C22—C20—H20109.3
C8—C7—C1120.33 (10)C21—C20—H20109.3
C3—C2—C1i117.67 (7)C17—C16—C15120.36 (15)
C3—C2—C1117.67 (7)C17—C16—H16119.8
C1i—C2—C1124.67 (14)C15—C16—H16119.8
C4—C5—C6119.00 (11)C14—C19—C18118.71 (14)
C4—C5—H5120.5C14—C19—H19120.6
C6—C5—H5120.5C18—C19—H19120.6
C6—C1—C2120.06 (11)C16—C17—C18119.81 (14)
C6—C1—C7116.97 (10)C16—C17—H17120.1
C2—C1—C7122.40 (11)C18—C17—H17120.1
O2—C6—C1115.93 (10)C17—C18—C19120.58 (15)
O2—C6—C5122.41 (11)C17—C18—H18119.7
C1—C6—C5121.65 (11)C19—C18—H18119.7
C10—C9—C8120.99 (11)C20—C21—H21A109.5
C10—C9—H9119.5C20—C21—H21B109.5
C8—C9—H9119.5H21A—C21—H21B109.5
C12—C13—C8121.08 (11)C20—C21—H21C109.5
C12—C13—H13119.5H21A—C21—H21C109.5
C8—C13—H13119.5H21B—C21—H21C109.5
C9—C10—C11119.28 (11)C20—C22—H22B109.5
C9—C10—H10120.4C20—C22—H22C109.5
C11—C10—H10120.4H22B—C22—H22C109.5
O3—C11—C10123.51 (11)C20—C22—H22A109.5
O3—C11—C12115.70 (11)H22B—C22—H22A109.5
C10—C11—C12120.79 (11)H22C—C22—H22A109.5
C13—C12—C11119.24 (11)C5—C4—C3121.77 (11)
C13—C12—H12120.4C5—C4—H4119.1
C11—C12—H12120.4C3—C4—H4119.1
C19—C14—C15121.12 (13)
C9—C8—C7—O15.73 (18)C9—C8—C13—C120.21 (19)
C13—C8—C7—O1172.58 (12)C7—C8—C13—C12178.51 (12)
C9—C8—C7—C1173.94 (11)C8—C9—C10—C110.71 (19)
C13—C8—C7—C17.76 (17)C14—O3—C11—C100.68 (19)
C4—C3—C2—C1i177.89 (7)C14—O3—C11—C12178.86 (12)
C4i—C3—C2—C1i2.11 (7)C9—C10—C11—O3179.14 (12)
C4—C3—C2—C12.11 (7)C9—C10—C11—C120.38 (19)
C4i—C3—C2—C1177.89 (7)C8—C13—C12—C110.1 (2)
C3—C2—C1—C61.15 (12)O3—C11—C12—C13179.58 (12)
C1i—C2—C1—C6178.85 (12)C10—C11—C12—C130.0 (2)
C3—C2—C1—C7169.94 (8)C11—O3—C14—C1984.84 (16)
C1i—C2—C1—C710.06 (8)C11—O3—C14—C1598.74 (15)
O1—C7—C1—C6110.54 (13)C19—C14—C15—C160.4 (2)
C8—C7—C1—C669.13 (14)O3—C14—C15—C16175.98 (12)
O1—C7—C1—C260.81 (15)C6—O2—C20—C2260.29 (17)
C8—C7—C1—C2119.52 (11)C6—O2—C20—C21177.26 (13)
C20—O2—C6—C1150.33 (12)C14—C15—C16—C170.8 (2)
C20—O2—C6—C529.72 (18)C15—C14—C19—C180.5 (2)
C2—C1—C6—O2178.90 (9)O3—C14—C19—C18176.89 (13)
C7—C1—C6—O27.34 (16)C15—C16—C17—C180.3 (2)
C2—C1—C6—C51.14 (17)C16—C17—C18—C190.7 (2)
C7—C1—C6—C5172.70 (11)C14—C19—C18—C171.1 (2)
C4—C5—C6—O2177.55 (11)C6—C5—C4—C31.49 (18)
C4—C5—C6—C12.49 (19)C4i—C3—C4—C5179.19 (13)
C13—C8—C9—C100.62 (18)C2—C3—C4—C50.81 (13)
C7—C8—C9—C10178.99 (11)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···O1ii0.952.443.3398 (15)158
C16—H16···Cgiii0.952.973.8383 (19)152
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC42H36O6
Mr636.71
Crystal system, space groupMonoclinic, C2/c
Temperature (K)193
a, b, c (Å)22.7084 (4), 10.3582 (2), 14.7152 (3)
β (°) 100.106 (1)
V3)3407.58 (11)
Z4
Radiation typeCu Kα
µ (mm1)0.66
Crystal size (mm)0.60 × 0.60 × 0.50
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.693, 0.734
No. of measured, independent and
observed [I > 2σ(I)] reflections
28911, 3101, 2749
Rint0.029
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.04
No. of reflections3101
No. of parameters221
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.16

Computer programs: PROCESS-AUTO (Rigaku, 1998), Il Milione (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.952.443.3398 (15)158
C16—H16···Cgii0.952.973.8383 (19)152
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y, z+2.
 

Acknowledgements

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by the Shorai Foundation for Science and Technology.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
First citationHijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903.  Web of Science CSD CrossRef CAS IUCr Journals
First citationMuto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.  Web of Science CSD CrossRef IUCr Journals
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
First citationSasagawa, K., Hijikata, D., Sakamoto, R., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2596.  CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds