organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl N-hy­dr­oxy-N-(2-methyl­phen­yl)carbamate

aCatalytic Hydrogenation Research Center, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: chrc@zjut.edu.cn

(Received 19 December 2012; accepted 5 January 2013; online 12 January 2013)

There are three independent mol­ecules in the asymmetric unit of the title compound, C9H11NO3, which are connected by O—H⋯O hydrogen bonds, forming an R33(15) ring. The dihedral angles between the planes of the benzene and amide groups are 75.16 (3), 71.47 (3) and 70.56 (3)°. The hy­droxy O atom lies 0.912 (3), 1.172 (2) and 1.339 (2) Å from the mean plane of the corresponding benzene ring in the three mol­ecules.

Related literature

The title compound is an inter­mediate in the synthesis of the strobilurin fungicide pyraclostrobin. For general background, see: Hou et al. (2002[Hou, C.-Q., Li, Z.-N. & Liu, C.-L. (2002). Pesticides, 41, 41-43.]); Yang et al. (2012[Yang, L.-J. & Bai, Y.-L. (2012). Mod. Agrochem. 11, 46-50.]); Tao et al. (2009[Tao, X.-J., Luo, L.-M., Huang, C.-Q. & Xiong, L.-L. (2009). Agrochem. Res. Appl. 41, 41-43.]). For related structures, see: Mercader et al. (2011[Mercader, J. V., Agullo, C., Abad-Somovilla, A. & Abad-Fuentes, A. (2011). Org. Biomol. Chem. 9, 1443-1453.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11NO3

  • Mr = 181.19

  • Monoclinic, P 21 /n

  • a = 7.6418 (3) Å

  • b = 20.8825 (9) Å

  • c = 18.0412 (9) Å

  • β = 94.485 (1)°

  • V = 2870.2 (2) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.54 × 0.37 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.946, Tmax = 0.983

  • 24402 measured reflections

  • 5643 independent reflections

  • 3163 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.161

  • S = 1.01

  • 5643 reflections

  • 362 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O2B 0.82 1.94 2.719 (3) 157
O1B—H1B⋯O2C 0.82 1.94 2.716 (3) 157
O1C—H1C⋯O2A 0.82 1.99 2.757 (3) 156

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS_AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

N-aryl hydroxylamines are a significant class of compounds that are key building blocks in the synthesis of natural products and biologically active compounds. The title compound, which was readily synthesized from (N)-(2-methylphenyl)hydroxylamine, act as an intermediate for the synthesis of Strobilurin fungicide Pyraclostrobin. In this article, the crystal structure of the title compound methyl(N)-hydroxy-2- methylphenylcarbamate is described (Fig. 1). There are three independent molecules in the asymmetric unit, which are connected by intermolecular O—H···O hydrogen bonds to construct a large ring involving 15 atoms with graph set notation R33(15) (Fig. 2). In each molecule, the dihedral angles of the plane of the phenyl ring and the plane of the amide moiety are 75.16 (3)°, 71.47 (3)°, 70.56 (3)° respectively, while the phenyl rings of the three molecules make dihedral angles of 79.87 (3)°, 71.01 (3)°, 55.86 (3)° with each other. Each hydroxyl O atom lies 0.912 (3) Å, 1.172 (2) Å and 1.339 (2) Å from the mean plane of the corresponding phenyl ring.

Related literature top

The title compound is an intermediate in the synthesis of the strobilurin fungicide pyraclostrobin. For general background, see: Hou et al. (2002); Yang et al. (2012); Tao et al. (2009). For related structures, see: Mercader et al. (2011). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a solution of (N)-(2-methylphenyl)hydroxylamine (0.022 mol) in CH2Cl2 (20 ml), sodium bicarbonate (0.033 mol) was added and methyl chloroformate(0.024 mol) was added dropwise, and the mixture was stirred at 0° C for 2 h (monitored by HPLC). Then the reaction mixture was filtered and distilled under vacuum, and the residue was recrystallized from petroleum ether to give the title compound. Single crystals were obtained by slow evaporation of a CH2Cl2 and cyclohexane solution.

Refinement top

H atoms were placed in calculated positions with O—H = 0.82 Å, C—H = 0.96 Å (sp), C—H = 0.93 Å (aromatic). All H atoms included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq or 1.5Ueq (sp3) of the carrier atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Placement of the hydrogen-bonded trimer in the unit cell.
Methyl N-hydroxy-N-(2-methylphenyl)carbamate top
Crystal data top
C9H11NO3F(000) = 1152
Mr = 181.19Dx = 1.258 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 13549 reflections
a = 7.6418 (3) Åθ = 3.0–27.4°
b = 20.8825 (9) ŵ = 0.10 mm1
c = 18.0412 (9) ÅT = 296 K
β = 94.485 (1)°Needle, colorless
V = 2870.2 (2) Å30.54 × 0.37 × 0.18 mm
Z = 12
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
5643 independent reflections
Radiation source: rotating anode3163 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 10.00 pixels mm-1θmax = 26.0°, θmin = 3.0°
ω scansh = 89
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2524
Tmin = 0.946, Tmax = 0.983l = 2222
24402 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0464P)2 + 2.225P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
5643 reflectionsΔρmax = 0.41 e Å3
362 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0071 (7)
Crystal data top
C9H11NO3V = 2870.2 (2) Å3
Mr = 181.19Z = 12
Monoclinic, P21/nMo Kα radiation
a = 7.6418 (3) ŵ = 0.10 mm1
b = 20.8825 (9) ÅT = 296 K
c = 18.0412 (9) Å0.54 × 0.37 × 0.18 mm
β = 94.485 (1)°
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
5643 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3163 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.983Rint = 0.051
24402 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.01Δρmax = 0.41 e Å3
5643 reflectionsΔρmin = 0.18 e Å3
362 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.7015 (7)0.0013 (2)0.4220 (3)0.1281 (17)
H1A10.81600.01470.44170.192*
H1A20.69900.04450.41730.192*
H1A30.61570.01460.45500.192*
C2A0.6622 (5)0.02987 (19)0.3507 (3)0.0855 (11)
C3A0.6870 (5)0.0069 (3)0.2864 (3)0.1027 (15)
H3A0.72910.04860.29010.123*
C4A0.6481 (5)0.0204 (3)0.2205 (4)0.1099 (17)
H4A0.66860.00350.17850.132*
C5A0.5789 (6)0.0819 (3)0.2091 (2)0.1206 (18)
H5A0.54850.09770.16160.145*
C6A0.5584 (5)0.1173 (2)0.2709 (2)0.0930 (13)
H6A0.51890.15930.26620.112*
C7A0.5973 (3)0.09029 (14)0.34306 (18)0.0586 (8)
C8A0.4200 (4)0.15525 (14)0.42474 (15)0.0522 (7)
C9A0.1141 (4)0.1418 (2)0.4157 (2)0.0876 (12)
H9A10.10870.13620.46830.131*
H9A20.02440.11640.38960.131*
H9A30.09620.18610.40320.131*
N1A0.5733 (3)0.13103 (12)0.40482 (13)0.0576 (6)
O1A0.7214 (2)0.16837 (11)0.42788 (11)0.0633 (6)
H1A0.75550.15890.47070.095*
O2A0.4081 (3)0.20012 (10)0.46662 (12)0.0667 (6)
O3A0.2843 (2)0.12164 (11)0.39471 (12)0.0685 (6)
C1B0.9234 (4)0.19851 (18)0.78477 (18)0.0734 (9)
H1B10.84500.22460.75350.110*
H1B20.93860.21710.83350.110*
H1B30.87510.15630.78810.110*
C2B1.0991 (4)0.19463 (14)0.75196 (16)0.0552 (7)
C3B1.2551 (4)0.19938 (17)0.79671 (18)0.0725 (9)
H3B1.25070.20350.84790.087*
C4B1.4155 (4)0.19809 (18)0.7672 (2)0.0772 (10)
H4B1.51790.20080.79840.093*
C5B1.4247 (4)0.19279 (17)0.6920 (2)0.0735 (9)
H5B1.53330.19300.67210.088*
C6B1.2733 (4)0.18723 (14)0.64585 (17)0.0593 (8)
H6B1.27910.18350.59470.071*
C7B1.1122 (3)0.18725 (13)0.67609 (15)0.0478 (6)
C8B0.8634 (4)0.12549 (15)0.61676 (18)0.0586 (7)
C9B0.7983 (6)0.02666 (19)0.6715 (3)0.1248 (18)
H9B10.67690.03780.67320.187*
H9B20.83510.00090.71390.187*
H9B30.81360.00300.62680.187*
N1B0.9562 (3)0.18018 (11)0.62738 (12)0.0525 (6)
O1B0.9443 (3)0.22088 (9)0.56502 (10)0.0586 (5)
H1B0.87430.24970.57140.088*
O2B0.7543 (3)0.11544 (11)0.56597 (13)0.0803 (7)
O3B0.9030 (3)0.08435 (10)0.67221 (13)0.0744 (6)
C1C0.5743 (5)0.43964 (19)0.4292 (3)0.1070 (14)
H1C10.65160.44380.47360.161*
H1C20.55950.48070.40560.161*
H1C30.62380.41010.39580.161*
C2C0.4036 (5)0.41579 (18)0.4486 (2)0.0846 (11)
C3C0.2437 (6)0.4432 (2)0.4177 (2)0.1088 (15)
H3C0.24720.47710.38440.131*
C4C0.0889 (7)0.4210 (3)0.4356 (3)0.1309 (19)
H4C0.01350.44030.41520.157*
C5C0.0768 (5)0.3698 (3)0.4841 (3)0.1148 (16)
H5C0.03240.35490.49560.138*
C6C0.2236 (4)0.34211 (18)0.5139 (2)0.0800 (10)
H6C0.21750.30730.54570.096*
C9C0.5530 (5)0.3753 (2)0.71892 (19)0.0984 (13)
H9C10.54480.33260.73790.148*
H9C20.47350.40270.74270.148*
H9C30.67080.39080.72880.148*
C7C0.3899 (4)0.36664 (15)0.49641 (17)0.0646 (8)
C8C0.6045 (4)0.33602 (14)0.60086 (17)0.0547 (7)
N1C0.5431 (3)0.33508 (12)0.52944 (13)0.0592 (6)
O1C0.6448 (3)0.29974 (10)0.48250 (11)0.0627 (6)
H1C0.60120.26420.47540.094*
O2C0.7308 (3)0.30629 (11)0.62704 (11)0.0682 (6)
O3C0.5079 (3)0.37516 (11)0.64001 (12)0.0741 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.134 (4)0.114 (4)0.136 (4)0.002 (3)0.007 (3)0.027 (3)
C2A0.063 (2)0.081 (3)0.112 (3)0.0024 (19)0.002 (2)0.017 (2)
C3A0.072 (3)0.126 (4)0.109 (4)0.005 (2)0.004 (2)0.063 (3)
C4A0.065 (3)0.123 (4)0.143 (5)0.003 (3)0.014 (3)0.062 (4)
C5A0.090 (3)0.206 (6)0.066 (3)0.009 (4)0.006 (2)0.016 (3)
C6A0.079 (2)0.137 (4)0.063 (2)0.012 (2)0.0030 (19)0.037 (2)
C7A0.0411 (15)0.0571 (18)0.078 (2)0.0017 (14)0.0078 (14)0.0214 (16)
C8A0.0461 (16)0.0638 (18)0.0470 (16)0.0028 (14)0.0054 (13)0.0060 (14)
C9A0.0410 (17)0.133 (3)0.091 (3)0.0032 (19)0.0174 (17)0.028 (2)
N1A0.0386 (12)0.0714 (16)0.0622 (15)0.0011 (12)0.0000 (11)0.0223 (13)
O1A0.0450 (11)0.0824 (15)0.0615 (13)0.0052 (10)0.0012 (9)0.0166 (11)
O2A0.0605 (13)0.0747 (14)0.0665 (14)0.0030 (11)0.0150 (10)0.0227 (12)
O3A0.0395 (10)0.0911 (15)0.0756 (14)0.0023 (11)0.0092 (10)0.0285 (12)
C1B0.0615 (19)0.101 (3)0.059 (2)0.0030 (18)0.0166 (16)0.0048 (18)
C2B0.0498 (16)0.0672 (18)0.0488 (17)0.0035 (14)0.0040 (13)0.0018 (14)
C3B0.064 (2)0.102 (3)0.0503 (19)0.0097 (19)0.0019 (15)0.0053 (18)
C4B0.0501 (18)0.105 (3)0.075 (2)0.0117 (18)0.0063 (17)0.002 (2)
C5B0.0491 (18)0.093 (3)0.080 (3)0.0057 (17)0.0119 (17)0.000 (2)
C6B0.0597 (18)0.0678 (19)0.0516 (18)0.0000 (15)0.0127 (15)0.0013 (15)
C7B0.0470 (15)0.0499 (15)0.0460 (16)0.0019 (12)0.0005 (12)0.0006 (12)
C8B0.0542 (17)0.0606 (19)0.060 (2)0.0039 (15)0.0015 (15)0.0007 (16)
C9B0.133 (4)0.078 (3)0.157 (4)0.046 (3)0.031 (3)0.035 (3)
N1B0.0566 (14)0.0528 (14)0.0468 (14)0.0014 (11)0.0043 (11)0.0066 (11)
O1B0.0638 (13)0.0631 (13)0.0490 (12)0.0123 (10)0.0050 (9)0.0096 (10)
O2B0.0765 (15)0.0873 (17)0.0722 (15)0.0163 (13)0.0246 (13)0.0017 (13)
O3B0.0747 (15)0.0585 (13)0.0865 (16)0.0123 (11)0.0162 (12)0.0143 (12)
C1C0.098 (3)0.085 (3)0.142 (4)0.010 (2)0.040 (3)0.004 (3)
C2C0.086 (3)0.079 (2)0.091 (3)0.004 (2)0.024 (2)0.004 (2)
C3C0.087 (3)0.129 (4)0.109 (3)0.042 (3)0.001 (3)0.036 (3)
C4C0.085 (3)0.170 (5)0.135 (4)0.029 (3)0.006 (3)0.061 (4)
C5C0.063 (2)0.152 (4)0.127 (4)0.007 (3)0.004 (2)0.031 (3)
C6C0.063 (2)0.089 (3)0.087 (3)0.0022 (19)0.0027 (19)0.016 (2)
C9C0.109 (3)0.127 (3)0.057 (2)0.030 (3)0.008 (2)0.035 (2)
C7C0.073 (2)0.0644 (19)0.0556 (19)0.0068 (17)0.0026 (16)0.0058 (16)
C8C0.0504 (17)0.0554 (17)0.0577 (19)0.0015 (14)0.0013 (14)0.0084 (15)
N1C0.0570 (14)0.0695 (16)0.0505 (15)0.0180 (12)0.0002 (12)0.0072 (12)
O1C0.0628 (13)0.0682 (13)0.0579 (13)0.0055 (10)0.0108 (10)0.0100 (11)
O2C0.0620 (13)0.0795 (14)0.0607 (14)0.0194 (12)0.0091 (10)0.0087 (11)
O3C0.0716 (14)0.0880 (16)0.0612 (14)0.0252 (12)0.0039 (11)0.0230 (12)
Geometric parameters (Å, º) top
C1A—C2A1.429 (6)C6B—C7B1.385 (4)
C1A—H1A10.9600C6B—H6B0.9300
C1A—H1A20.9600C7B—N1B1.432 (3)
C1A—H1A30.9600C8B—O2B1.208 (3)
C2A—C7A1.359 (5)C8B—O3B1.335 (3)
C2A—C3A1.416 (5)C8B—N1B1.350 (4)
C3A—C4A1.330 (6)C9B—O3B1.445 (4)
C3A—H3A0.9300C9B—H9B10.9600
C4A—C5A1.398 (7)C9B—H9B20.9600
C4A—H4A0.9300C9B—H9B30.9600
C5A—C6A1.357 (6)N1B—O1B1.407 (3)
C5A—H5A0.9300O1B—H1B0.8200
C6A—C7A1.429 (5)C1C—C2C1.464 (5)
C6A—H6A0.9300C1C—H1C10.9600
C7A—N1A1.425 (4)C1C—H1C20.9600
C8A—O2A1.212 (3)C1C—H1C30.9600
C8A—O3A1.332 (3)C2C—C7C1.351 (5)
C8A—N1A1.350 (3)C2C—C3C1.423 (5)
C9A—O3A1.445 (3)C3C—C4C1.333 (6)
C9A—H9A10.9600C3C—H3C0.9300
C9A—H9A20.9600C4C—C5C1.389 (6)
C9A—H9A30.9600C4C—H4C0.9300
N1A—O1A1.410 (3)C5C—C6C1.337 (5)
O1A—H1A0.8200C5C—H5C0.9300
C1B—C2B1.511 (4)C6C—C7C1.428 (5)
C1B—H1B10.9600C6C—H6C0.9300
C1B—H1B20.9600C9C—O3C1.438 (4)
C1B—H1B30.9600C9C—H9C10.9600
C2B—C7B1.389 (4)C9C—H9C20.9600
C2B—C3B1.390 (4)C9C—H9C30.9600
C3B—C4B1.374 (4)C7C—N1C1.432 (4)
C3B—H3B0.9300C8C—O2C1.212 (3)
C4B—C5B1.369 (5)C8C—N1C1.337 (4)
C4B—H4B0.9300C8C—O3C1.339 (3)
C5B—C6B1.377 (4)N1C—O1C1.403 (3)
C5B—H5B0.9300O1C—H1C0.8200
C2A—C1A—H1A1109.5C5B—C6B—H6B120.2
C2A—C1A—H1A2109.5C7B—C6B—H6B120.2
H1A1—C1A—H1A2109.5C6B—C7B—C2B121.5 (3)
C2A—C1A—H1A3109.5C6B—C7B—N1B118.8 (3)
H1A1—C1A—H1A3109.5C2B—C7B—N1B119.7 (2)
H1A2—C1A—H1A3109.5O2B—C8B—O3B124.0 (3)
C7A—C2A—C3A119.4 (4)O2B—C8B—N1B125.3 (3)
C7A—C2A—C1A121.9 (4)O3B—C8B—N1B110.6 (3)
C3A—C2A—C1A118.7 (4)O3B—C9B—H9B1109.5
C4A—C3A—C2A117.7 (5)O3B—C9B—H9B2109.5
C4A—C3A—H3A121.1H9B1—C9B—H9B2109.5
C2A—C3A—H3A121.1O3B—C9B—H9B3109.5
C3A—C4A—C5A125.5 (5)H9B1—C9B—H9B3109.5
C3A—C4A—H4A117.3H9B2—C9B—H9B3109.5
C5A—C4A—H4A117.3C8B—N1B—O1B113.4 (2)
C6A—C5A—C4A116.5 (5)C8B—N1B—C7B125.2 (2)
C6A—C5A—H5A121.8O1B—N1B—C7B115.3 (2)
C4A—C5A—H5A121.8N1B—O1B—H1B109.5
C5A—C6A—C7A120.3 (5)C8B—O3B—C9B115.9 (3)
C5A—C6A—H6A119.8C2C—C1C—H1C1109.5
C7A—C6A—H6A119.8C2C—C1C—H1C2109.5
C2A—C7A—N1A122.9 (3)H1C1—C1C—H1C2109.5
C2A—C7A—C6A120.5 (3)C2C—C1C—H1C3109.5
N1A—C7A—C6A116.5 (3)H1C1—C1C—H1C3109.5
O2A—C8A—O3A124.5 (2)H1C2—C1C—H1C3109.5
O2A—C8A—N1A124.4 (3)C7C—C2C—C3C116.6 (4)
O3A—C8A—N1A111.0 (2)C7C—C2C—C1C121.7 (4)
O3A—C9A—H9A1109.5C3C—C2C—C1C121.6 (4)
O3A—C9A—H9A2109.5C4C—C3C—C2C121.1 (4)
H9A1—C9A—H9A2109.5C4C—C3C—H3C119.4
O3A—C9A—H9A3109.5C2C—C3C—H3C119.4
H9A1—C9A—H9A3109.5C3C—C4C—C5C121.6 (4)
H9A2—C9A—H9A3109.5C3C—C4C—H4C119.2
C8A—N1A—O1A114.0 (2)C5C—C4C—H4C119.2
C8A—N1A—C7A126.8 (2)C6C—C5C—C4C119.4 (4)
O1A—N1A—C7A114.3 (2)C6C—C5C—H5C120.3
N1A—O1A—H1A109.5C4C—C5C—H5C120.3
C8A—O3A—C9A115.3 (2)C5C—C6C—C7C119.3 (4)
C2B—C1B—H1B1109.5C5C—C6C—H6C120.4
C2B—C1B—H1B2109.5C7C—C6C—H6C120.4
H1B1—C1B—H1B2109.5O3C—C9C—H9C1109.5
C2B—C1B—H1B3109.5O3C—C9C—H9C2109.5
H1B1—C1B—H1B3109.5H9C1—C9C—H9C2109.5
H1B2—C1B—H1B3109.5O3C—C9C—H9C3109.5
C7B—C2B—C3B117.1 (3)H9C1—C9C—H9C3109.5
C7B—C2B—C1B121.8 (3)H9C2—C9C—H9C3109.5
C3B—C2B—C1B121.1 (3)C2C—C7C—C6C121.9 (3)
C4B—C3B—C2B121.6 (3)C2C—C7C—N1C120.9 (3)
C4B—C3B—H3B119.2C6C—C7C—N1C117.1 (3)
C2B—C3B—H3B119.2O2C—C8C—N1C125.3 (3)
C5B—C4B—C3B120.1 (3)O2C—C8C—O3C124.2 (3)
C5B—C4B—H4B119.9N1C—C8C—O3C110.5 (3)
C3B—C4B—H4B119.9C8C—N1C—O1C114.8 (2)
C4B—C5B—C6B120.0 (3)C8C—N1C—C7C127.5 (2)
C4B—C5B—H5B120.0O1C—N1C—C7C117.7 (2)
C6B—C5B—H5B120.0N1C—O1C—H1C109.5
C5B—C6B—C7B119.5 (3)C8C—O3C—C9C115.1 (3)
C7A—C2A—C3A—C4A1.2 (6)O2B—C8B—N1B—O1B13.3 (4)
C1A—C2A—C3A—C4A179.4 (4)O3B—C8B—N1B—O1B169.4 (2)
C2A—C3A—C4A—C5A2.2 (7)O2B—C8B—N1B—C7B164.4 (3)
C3A—C4A—C5A—C6A3.4 (7)O3B—C8B—N1B—C7B18.4 (4)
C4A—C5A—C6A—C7A3.4 (6)C6B—C7B—N1B—C8B101.2 (3)
C3A—C2A—C7A—N1A178.1 (3)C2B—C7B—N1B—C8B79.5 (4)
C1A—C2A—C7A—N1A3.8 (5)C6B—C7B—N1B—O1B49.4 (3)
C3A—C2A—C7A—C6A1.5 (5)C2B—C7B—N1B—O1B129.9 (3)
C1A—C2A—C7A—C6A179.6 (4)O2B—C8B—O3B—C9B3.8 (5)
C5A—C6A—C7A—C2A2.8 (5)N1B—C8B—O3B—C9B173.5 (3)
C5A—C6A—C7A—N1A179.5 (3)C7C—C2C—C3C—C4C0.1 (7)
O2A—C8A—N1A—O1A9.2 (4)C1C—C2C—C3C—C4C179.9 (5)
O3A—C8A—N1A—O1A173.4 (2)C2C—C3C—C4C—C5C1.1 (9)
O2A—C8A—N1A—C7A162.9 (3)C3C—C4C—C5C—C6C0.4 (9)
O3A—C8A—N1A—C7A19.7 (4)C4C—C5C—C6C—C7C1.2 (7)
C2A—C7A—N1A—C8A117.7 (4)C3C—C2C—C7C—C6C1.5 (5)
C6A—C7A—N1A—C8A65.6 (4)C1C—C2C—C7C—C6C178.3 (4)
C2A—C7A—N1A—O1A88.7 (4)C3C—C2C—C7C—N1C178.9 (3)
C6A—C7A—N1A—O1A88.0 (3)C1C—C2C—C7C—N1C1.0 (5)
O2A—C8A—O3A—C9A0.5 (4)C5C—C6C—C7C—C2C2.2 (6)
N1A—C8A—O3A—C9A177.0 (3)C5C—C6C—C7C—N1C179.6 (4)
C7B—C2B—C3B—C4B1.2 (5)O2C—C8C—N1C—O1C4.7 (4)
C1B—C2B—C3B—C4B177.8 (3)O3C—C8C—N1C—O1C174.7 (2)
C2B—C3B—C4B—C5B0.8 (6)O2C—C8C—N1C—C7C176.6 (3)
C3B—C4B—C5B—C6B1.5 (6)O3C—C8C—N1C—C7C4.0 (4)
C4B—C5B—C6B—C7B0.2 (5)C2C—C7C—N1C—C8C111.8 (4)
C5B—C6B—C7B—C2B1.9 (4)C6C—C7C—N1C—C8C70.7 (4)
C5B—C6B—C7B—N1B178.8 (3)C2C—C7C—N1C—O1C66.8 (4)
C3B—C2B—C7B—C6B2.6 (4)C6C—C7C—N1C—O1C110.6 (3)
C1B—C2B—C7B—C6B176.4 (3)O2C—C8C—O3C—C9C6.0 (5)
C3B—C2B—C7B—N1B178.2 (3)N1C—C8C—O3C—C9C174.6 (3)
C1B—C2B—C7B—N1B2.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O2B0.821.942.719 (3)157
O1B—H1B···O2C0.821.942.716 (3)157
O1C—H1C···O2A0.821.992.757 (3)156

Experimental details

Crystal data
Chemical formulaC9H11NO3
Mr181.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.6418 (3), 20.8825 (9), 18.0412 (9)
β (°) 94.485 (1)
V3)2870.2 (2)
Z12
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.54 × 0.37 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID/ZJUG
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.946, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
24402, 5643, 3163
Rint0.051
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.161, 1.01
No. of reflections5643
No. of parameters362
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.18

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O2B0.821.942.719 (3)157
O1B—H1B···O2C0.821.942.716 (3)157
O1C—H1C···O2A0.821.992.757 (3)156
 

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. Y4110373). We are also grateful for the help of Professor Jian-Ming Gu of Zhejiang University.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHou, C.-Q., Li, Z.-N. & Liu, C.-L. (2002). Pesticides, 41, 41–43.  CAS Google Scholar
First citationMercader, J. V., Agullo, C., Abad-Somovilla, A. & Abad-Fuentes, A. (2011). Org. Biomol. Chem. 9, 1443–1453.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku (2006). PROCESS_AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, X.-J., Luo, L.-M., Huang, C.-Q. & Xiong, L.-L. (2009). Agrochem. Res. Appl. 41, 41–43.  Google Scholar
First citationYang, L.-J. & Bai, Y.-L. (2012). Mod. Agrochem. 11, 46–50.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds