supplementary materials


pv2611 scheme

Acta Cryst. (2013). E69, m110-m111    [ doi:10.1107/S1600536813000676 ]

Poly[diaqua([mu]4-carboxylatomethylphosphonato)([mu]4-carboxymethylphosphonato)pentadecamethylpentatin(IV)]

M. S. Boye, A. Diasse-Sarr, A. Grosjean and P. Guionneau

Abstract top

The central SnIV atom of the pentanuclear title complex, {[Sn(CH3)3]3O2C(CH2)PO3[Sn(CH3)3(H2O)]2HO2C(CH2)PO3}, is located on a twofold rotation axis; due to symmetry, the H atom of the carboxyl group of the anion is disordered with a site occupancy of 0.5. The central SnIV atom is bonded to three methyl groups (one of which is disordered about the twofold rotation axis) and is symmetrically trans coordinated by two phosphonate groups with Sn-O = 2.2665 (12) Å while the other SnMe3 residues are asymmetrically trans coordinated with Sn-O = 2.1587 (12) and 2.3756 (13) Å for one residue and Sn-O = 2.1522 (12) and 2.4335 (12) Å for the other; the Sn-O distances involving two O atoms trans to carboxylate are longer than those trans to phosphonate groups. The Sn-C distances lie in a very narrow range [2.112 (2)-2.133 (3) Å]. The oxyanion behaves as a tetra-coordinating ligand. The bridging mode of the latter leads to the formation of layers parallel to (001) that are interconnected by O-H...O and C-H...O hydrogen bonds.

Comment top

Organotin(IV) compounds are involved in many applications in a large diversity of fields including agriculture, medicine and industry (Dutrecq et al., 1992; Basu Baul et al., 2011). Carboxylalkylphosphonate derivatives are interesting from the point of view of their structural tendency to form polymeric structures. The presence of carboxylate and phosphonate functions makes carboxylalkylphosphonate a polyfunctional ligand which can coordinate to the metal in all directions. The aim of combining organotin and carboxyalkylphosphonate is to exalte the biocidal activity in the resulting title complex. Only a few structures related to the title compound have been reported (Zhang et al., 2010).

The asymmetry unit of the title complex, [(SnMe3)3O2C(CH2)PO3(SnMe3.H2O)2HO2C(CH2)PO3]n, contains one half of the trimethyltin(IV) (SnMe3) lying on a 2-fold axis linked to a [(SnMe3)2.H2O](PO3CH2CO2H0.5) fragment leading to the pentanuclear complex (Fig. 1) that forms the repeat unit of the polymer; the hydroxyl H-atom is disordered with 0.5 occupancy factor. The geometry of all tin atoms (Sn1, Sn2 and Sn3) is trigonal bipyramidal. The Sn—O distances in the title complex involving two O atoms trans to carboxylate [Sn3—O5ii = 2.4335 (12) Å] are longer than those trans to phosphonate groups [Sn3—O3 = 2.1522 (12) Å] (Table 1). The longest P—O bond [P1—O3 = 1.5156 (12) Å] is linked to the strongest Sn—O bond while, on the contrary, the shortest C—O bond [C8—O5 = 1.257 (2) Å] is linked to the weakest one. The values of O—Sn—O angles are in the range [176.51 (5)–176.84 (6)°] indicating a significant deviation from linearity. The C—Sn—C angles [115.13 (11)–124.85 (9)°] indicate almost planar Sn—C3 groups. The crystal structure obtained is three-dimensional since, within the packing, each pentacoordinated tin atom is bonded to two oxygen atoms in axial positions and three methyl groups in equatorial positions. The SnC3 residues are asymmetrically trans coordinated. The oxoanion behaves as a tetradentate ligand involving three oxygen atoms of the phosphonate and one of the carboxylate oxygen atom. Resulting chains are interconnected by O—H ···O hydrogen bonds which generate crystal lattice rectangular (Fig. 2 & Table 1).

Related literature top

For applications of tin-based materials, see: Dutrecq et al. (1992); Basu Baul et al. (2011). For related structures, see: Zhang et al. (2010).

Experimental top

The title compound was synthesized by the reaction in ethanol (30 ml) of carboxymethylphosphonic acid (0.161 g, 1.13 mmol), KOH (0.229 g, 3.39 mmol) and trimethyltin(IV) chloride (0.675 g, 3.39 mmol) in a 1:3:3 ratio. The mixture was stirred around two hours at room temperature. Suitable crystals for X-ray diffraction were obtained after a slow evaporation of the solvent; m.p. 463–464 K.

Refinement top

Water H atoms were found in a difference map and included at those positions. Other H atoms were placed in geometrically calculated positions with C–H = 0.98 Å for methyl-H and 0.99 Å for methyelene-H, and refined using a riding model with Uiso(H)= x Ueq (carrier atom); x = 1.2 or 1.5.

Computing details top

Data collection: COLLECT (Nonius, 2003); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title compound showing the numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H-atoms have been omitted for clarity. Symmetry code: i = -x + 1, y, -z + 1/2
[Figure 2] Fig. 2. A view of O—H···O hydrogen bonds in the crystal structure. H atoms non-participating in hydrogen bonding and carbon atoms of the Sn- methyl group have been omitted for clarity.
Poly[diaqua(µ4-carboxylatomethylphosphonato)(µ4- carboxymethylphosphonato)pentadecamethylpentatin(IV)] top
Crystal data top
[Sn5(CH3)15(C2H2O5P)(C2H3O5P)(H2O)2]F(000) = 2176
Mr = 1130.01Dx = 1.886 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 34199 reflections
a = 11.6939 (2) Åθ = 1.0–33.7°
b = 13.1689 (3) ŵ = 3.22 mm1
c = 25.9575 (5) ÅT = 150 K
β = 95.40 (1)°Prism, colorless
V = 3979.61 (14) Å30.32 × 0.15 × 0.15 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
7932 independent reflections
Radiation source: fine-focus sealed tube7236 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scans with κ ofsetθmax = 33.8°, θmin = 2.3°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 1818
Tmin = 0.426, Tmax = 0.644k = 2020
15302 measured reflectionsl = 4040
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0207P)2 + 4.2723P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.005
7932 reflectionsΔρmax = 1.14 e Å3
182 parametersΔρmin = 0.85 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00041 (3)
Crystal data top
[Sn5(CH3)15(C2H2O5P)(C2H3O5P)(H2O)2]V = 3979.61 (14) Å3
Mr = 1130.01Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.6939 (2) ŵ = 3.22 mm1
b = 13.1689 (3) ÅT = 150 K
c = 25.9575 (5) Å0.32 × 0.15 × 0.15 mm
β = 95.40 (1)°
Data collection top
Nonius KappaCCD
diffractometer
7932 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
7236 reflections with I > 2σ(I)
Tmin = 0.426, Tmax = 0.644Rint = 0.020
15302 measured reflectionsθmax = 33.8°
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.054Δρmax = 1.14 e Å3
S = 1.09Δρmin = 0.85 e Å3
7932 reflectionsAbsolute structure: ?
182 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.50000.755553 (11)0.25000.01394 (4)
Sn30.657492 (10)0.979143 (8)0.093373 (4)0.01521 (3)
Sn20.178461 (10)0.935201 (8)0.137009 (4)0.01528 (3)
P10.43748 (3)0.80781 (3)0.118293 (15)0.01189 (7)
O50.33357 (11)0.57344 (9)0.08457 (5)0.0182 (2)
O40.24248 (11)0.67603 (9)0.02767 (5)0.0180 (2)
O10.50422 (11)0.75081 (9)0.16291 (5)0.0161 (2)
O30.49774 (11)0.90382 (9)0.10334 (5)0.0186 (2)
C70.6528 (2)0.94022 (17)0.01376 (8)0.0302 (4)
H7A0.61360.99400.00720.045*
H7B0.61120.87610.00760.045*
H7C0.73140.93260.00410.045*
O20.31351 (10)0.82643 (9)0.12850 (5)0.0183 (2)
C90.43300 (13)0.72417 (12)0.06161 (6)0.0139 (3)
H9A0.42990.76630.02990.017*
H9B0.50460.68360.06340.017*
C20.50000.9175 (2)0.25000.0258 (5)
H2A0.49760.94240.21430.039*0.50
H2B0.56990.94240.26980.039*0.50
H2C0.43250.94240.26580.039*0.50
C80.33124 (13)0.65301 (12)0.05775 (6)0.0135 (3)
C10.34603 (16)0.66906 (15)0.24300 (7)0.0225 (3)
H1A0.30630.67880.20840.034*
H1B0.29620.69150.26910.034*
H1C0.36450.59700.24820.034*
C40.28441 (19)1.06554 (15)0.13493 (10)0.0303 (4)
H4A0.23711.12450.12390.045*
H4B0.34201.05430.11050.045*
H4C0.32301.07810.16950.045*
C50.07938 (19)0.89233 (17)0.06770 (8)0.0298 (4)
H5A0.10510.82580.05640.045*
H5B0.08910.94290.04080.045*
H5C0.00180.88850.07400.045*
C30.1385 (2)0.86901 (18)0.20725 (8)0.0326 (5)
H3A0.20460.87550.23320.049*
H3B0.12040.79700.20160.049*
H3C0.07210.90380.21950.049*
C60.59248 (18)1.11584 (15)0.12221 (9)0.0284 (4)
H6A0.56121.10250.15530.043*
H6B0.53161.14240.09730.043*
H6C0.65461.16580.12740.043*
O60.02501 (12)1.04809 (10)0.14945 (6)0.0235 (3)
C100.76318 (18)0.88614 (18)0.14468 (9)0.0339 (5)
H10A0.81420.92900.16750.051*
H10B0.80930.84130.12470.051*
H10C0.71490.84510.16550.051*
H1O0.03741.04360.12730.050*
H2O0.03501.11180.15390.050*
H1O40.22730.63430.00290.050*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01612 (7)0.01318 (7)0.01246 (7)0.0000.00108 (5)0.000
Sn30.01622 (5)0.01419 (5)0.01498 (5)0.00358 (3)0.00010 (4)0.00139 (3)
Sn20.01507 (5)0.01522 (5)0.01564 (6)0.00115 (3)0.00182 (4)0.00054 (4)
P10.01177 (16)0.01130 (16)0.01267 (17)0.00176 (12)0.00149 (13)0.00042 (13)
O50.0157 (5)0.0162 (5)0.0220 (6)0.0029 (4)0.0018 (5)0.0060 (4)
O40.0163 (5)0.0181 (5)0.0183 (5)0.0042 (4)0.0044 (4)0.0046 (4)
O10.0189 (6)0.0169 (5)0.0123 (5)0.0013 (4)0.0005 (4)0.0005 (4)
O30.0183 (6)0.0140 (5)0.0232 (6)0.0066 (4)0.0010 (5)0.0020 (4)
C70.0352 (11)0.0341 (11)0.0217 (9)0.0133 (8)0.0055 (8)0.0054 (8)
O20.0134 (5)0.0166 (5)0.0258 (6)0.0008 (4)0.0063 (4)0.0011 (5)
C90.0130 (6)0.0166 (7)0.0123 (6)0.0039 (5)0.0017 (5)0.0001 (5)
C20.0419 (16)0.0156 (10)0.0194 (11)0.0000.0006 (11)0.000
C80.0130 (6)0.0135 (6)0.0140 (6)0.0020 (5)0.0013 (5)0.0000 (5)
C10.0201 (8)0.0262 (9)0.0207 (8)0.0057 (6)0.0012 (6)0.0045 (7)
C40.0254 (9)0.0188 (8)0.0481 (13)0.0023 (7)0.0104 (9)0.0041 (8)
C50.0308 (10)0.0330 (10)0.0244 (9)0.0088 (8)0.0042 (8)0.0088 (8)
C30.0387 (12)0.0343 (11)0.0269 (10)0.0160 (9)0.0150 (9)0.0104 (8)
C60.0264 (9)0.0196 (8)0.0406 (11)0.0068 (7)0.0110 (8)0.0071 (8)
O60.0195 (6)0.0186 (6)0.0308 (7)0.0076 (5)0.0062 (5)0.0057 (5)
C100.0244 (9)0.0344 (11)0.0411 (12)0.0056 (8)0.0063 (9)0.0204 (9)
Geometric parameters (Å, º) top
Sn1—C12.124 (2)C9—C81.511 (2)
Sn1—C1i2.124 (2)C9—H9A0.9900
Sn1—C22.133 (3)C9—H9B0.9900
Sn1—O1i2.2665 (12)C2—H2A0.9800
Sn1—O12.2665 (12)C2—H2B0.9800
Sn3—C62.118 (2)C2—H2C0.9800
Sn3—C102.119 (2)C1—H1A0.9800
Sn3—C72.125 (2)C1—H1B0.9800
Sn3—O32.1522 (12)C1—H1C0.9800
Sn3—O5ii2.4335 (12)C4—H4A0.9800
Sn2—C32.112 (2)C4—H4B0.9800
Sn2—C42.120 (2)C4—H4C0.9800
Sn2—C52.123 (2)C5—H5A0.9800
Sn2—O22.1587 (12)C5—H5B0.9800
Sn2—O62.3756 (13)C5—H5C0.9800
P1—O31.5156 (12)C3—H3A0.9800
P1—O21.5180 (13)C3—H3B0.9800
P1—O11.5310 (12)C3—H3C0.9800
P1—C91.8348 (16)C6—H6A0.9800
O5—C81.2571 (19)C6—H6B0.9800
O5—Sn3iii2.4335 (12)C6—H6C0.9800
O4—C81.2752 (19)O6—H1O0.8900
O4—H1O40.8500O6—H2O0.8500
C7—H7A0.9800C10—H10A0.9800
C7—H7B0.9800C10—H10B0.9800
C7—H7C0.9800C10—H10C0.9800
C1—Sn1—C1i115.13 (11)P1—C9—H9B109.0
C1—Sn1—C2122.43 (6)H9A—C9—H9B107.8
C1i—Sn1—C2122.43 (6)Sn1—C2—H2A109.5
C1—Sn1—O1i88.44 (6)Sn1—C2—H2B109.5
C1i—Sn1—O1i89.87 (6)H2A—C2—H2B109.5
C2—Sn1—O1i91.58 (3)Sn1—C2—H2C109.5
C1—Sn1—O189.87 (6)H2A—C2—H2C109.5
C1i—Sn1—O188.44 (6)H2B—C2—H2C109.5
C2—Sn1—O191.58 (3)O5—C8—O4120.75 (14)
O1i—Sn1—O1176.84 (6)O5—C8—C9120.30 (14)
C6—Sn3—C10118.46 (10)O4—C8—C9118.94 (14)
C6—Sn3—C7124.85 (9)Sn1—C1—H1A109.5
C10—Sn3—C7115.59 (10)Sn1—C1—H1B109.5
C6—Sn3—O390.27 (6)H1A—C1—H1B109.5
C10—Sn3—O396.87 (7)Sn1—C1—H1C109.5
C7—Sn3—O393.58 (7)H1A—C1—H1C109.5
C6—Sn3—O5ii86.24 (6)H1B—C1—H1C109.5
C10—Sn3—O5ii84.57 (6)Sn2—C4—H4A109.5
C7—Sn3—O5ii88.65 (7)Sn2—C4—H4B109.5
O3—Sn3—O5ii176.51 (5)H4A—C4—H4B109.5
C3—Sn2—C4122.21 (10)Sn2—C4—H4C109.5
C3—Sn2—C5118.33 (10)H4A—C4—H4C109.5
C4—Sn2—C5117.86 (10)H4B—C4—H4C109.5
C3—Sn2—O292.16 (7)Sn2—C5—H5A109.5
C4—Sn2—O295.72 (7)Sn2—C5—H5B109.5
C5—Sn2—O294.76 (7)H5A—C5—H5B109.5
C3—Sn2—O684.82 (7)Sn2—C5—H5C109.5
C4—Sn2—O686.99 (7)H5A—C5—H5C109.5
C5—Sn2—O685.56 (6)H5B—C5—H5C109.5
O2—Sn2—O6176.72 (5)Sn2—C3—H3A109.5
O3—P1—O2112.62 (7)Sn2—C3—H3B109.5
O3—P1—O1112.74 (7)H3A—C3—H3B109.5
O2—P1—O1111.98 (7)Sn2—C3—H3C109.5
O3—P1—C9105.92 (7)H3A—C3—H3C109.5
O2—P1—C9106.33 (7)H3B—C3—H3C109.5
O1—P1—C9106.64 (7)Sn3—C6—H6A109.5
C8—O5—Sn3iii120.20 (10)Sn3—C6—H6B109.5
C8—O4—H1O4114.10H6A—C6—H6B109.5
P1—O1—Sn1133.13 (7)Sn3—C6—H6C109.5
P1—O3—Sn3147.67 (8)H6A—C6—H6C109.5
Sn3—C7—H7A109.5H6B—C6—H6C109.5
Sn3—C7—H7B109.5Sn2—O6—H1O117.00
H7A—C7—H7B109.5Sn2—O6—H2O123.00
Sn3—C7—H7C109.5H1O—O6—H2O104.00
H7A—C7—H7C109.5Sn3—C10—H10A109.5
H7B—C7—H7C109.5Sn3—C10—H10B109.5
P1—O2—Sn2147.66 (8)H10A—C10—H10B109.5
C8—C9—P1112.86 (11)Sn3—C10—H10C109.5
C8—C9—H9A109.0H10A—C10—H10C109.5
P1—C9—H9A109.0H10B—C10—H10C109.5
C8—C9—H9B109.0
O3—P1—O1—Sn191.91 (11)O1—P1—O2—Sn2121.26 (15)
O2—P1—O1—Sn136.34 (12)C9—P1—O2—Sn2122.63 (15)
C9—P1—O1—Sn1152.26 (9)C3—Sn2—O2—P1130.11 (17)
C1—Sn1—O1—P176.70 (11)C4—Sn2—O2—P17.43 (17)
C1i—Sn1—O1—P1168.15 (11)C5—Sn2—O2—P1111.23 (16)
C2—Sn1—O1—P145.74 (10)O3—P1—C9—C8151.17 (11)
O2—P1—O3—Sn3164.46 (14)O2—P1—C9—C831.14 (13)
O1—P1—O3—Sn336.55 (17)O1—P1—C9—C888.51 (12)
C9—P1—O3—Sn379.71 (16)Sn3iii—O5—C8—O412.4 (2)
C6—Sn3—O3—P1142.37 (16)Sn3iii—O5—C8—C9166.22 (11)
C10—Sn3—O3—P123.64 (17)P1—C9—C8—O580.06 (17)
C7—Sn3—O3—P192.69 (16)P1—C9—C8—O498.60 (16)
O3—P1—O2—Sn27.05 (18)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1O···O5iv0.891.832.693 (2)164
O6—H2O···O1iv0.851.882.706 (2)161
C9—H9A···O4v0.992.513.227 (2)129
Symmetry codes: (iv) x1/2, y+1/2, z; (v) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1O···O5i0.891.832.693 (2)164
O6—H2O···O1i0.851.882.706 (2)161
C9—H9A···O4ii0.992.513.227 (2)129
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+3/2, z.
references
References top

Basu Baul, T. S., Paul, A., Pellerito, L., Scopelliti, M., Singh, P., Duthie, A., Devos, D. & Tiekink, E. R. T. (2011). Invest. New Drugs, 29, 285–299.

Dutrecq, A., Willem, R., Biesemans, M., Boualam, M., Meriem, A. & Gielen, M. (1992). Main Group Met. Chem. 15, 285–291.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Nonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Zhang, R., Wu, J. & Ma, C. (2010). J. Inorg. Organomet. Polym. 20, 405–410.