organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[2-(Tri­phenyl­phosphanyl­­idene)acet­yl]-2H-chromen-2-one

aAtta-ur-Rahman Institute for Natural Product Discovery (RiND), Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E., Malaysia, bFaculty of Applied Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor D. E., Malaysia, cFaculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40000 Shah Alam, Selangor D. E., Malaysia, dDepartment of Chemical Sciences, Faculty of Science and Technology, University Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia, eDepartment of Pharmacology and Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA (UiMT) Puncak Alam Campus, 42300 Puncak Alam, Selangor D. E., Malaysia, and fH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 23 December 2012; accepted 13 January 2013; online 19 January 2013)

In the title compound, C29H21O3P, a coumarin-substitued ylid, the P atom is linked to three benzene rings and a planar coumarin moiety via a methyl­enecarbonyl group. The bond lengths in the P=C–C=O fragment clearly indicate a delocalized system involving the olefinic and carbonyl bonds. The mol­ecular structure is stabilized by an intra­molecular C—H⋯O inter­action that results in an S7 graph-set ring motif. In the crystal, mol­ecules are linked into a three-dimensional framework by C—H⋯O hydrogen bonds.

Related literature

For applications and biological activity of coumarin, see: Kabak et al. (1999[Kabak, M., Elmali, A. & Elerman, Y. (1999). J. Mol. Struct. 477, 151-158.]); El-Ansary et al. (1992[El-Ansary, S. L., Aly, E. I. & Halem, M. A. (1992). Egypt. J. Pharm. Sci. 33, 379-390.]); Czerpack & Skolska (1982[Czerpack, R. & Skolska, S. (1982). Med. Dosw. Microbiol. 34, 37-50.]); Reddy & Somayojulu (1981[Reddy, Y. D. & Somayojulu, V. V. (1981). J. Indian Chem. Soc. 58, 599-601.]); Jund et al. (1971[Jund, L., Corse, J., King, A. S., Bayne, H. & Mihrag, K. (1971). Phytochemistry, 10, 2971-2974.]). For the crystal structure of a related compound, see: Schobert et al. (2000[Schobert, R., Seigfried, S., Nieuwenhuyzen, M., Milius, W. & Hampel, F. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1723-1730.]).

[Scheme 1]

Experimental

Crystal data
  • C29H21O3P

  • Mr = 448.43

  • Triclinic, [P \overline 1]

  • a = 9.7837 (12) Å

  • b = 10.3917 (14) Å

  • c = 12.2925 (17) Å

  • α = 108.669 (4)°

  • β = 104.484 (4)°

  • γ = 99.746 (4)°

  • V = 1103.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 100 K

  • 0.46 × 0.41 × 0.34 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 0.949

  • 36693 measured reflections

  • 4102 independent reflections

  • 3716 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.093

  • S = 1.07

  • 4102 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.95 2.45 3.378 (2) 166
C7—H7A⋯O3ii 0.95 2.28 3.171 (2) 156
C22—H22A⋯O2iii 0.95 2.48 3.398 (2) 163
C25—H25A⋯O3 0.95 2.31 3.168 (2) 150
C28—H28A⋯O1iv 0.95 2.54 3.281 (2) 135
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+1; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2000[Bruker (2000). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chromone chemistry continues to draw considerable interest of synthetic organic and medicinal chemists (Kabak et al., 1999). Chromones are more widely distributed in nature, especially in the plant kingdom, and exhibit low toxicity along with a wide spectrum of useful biological activities including antifungal, antiviral, antitublin, anti-inflammatory antiulcer and antihypertensive and immune-stimulating properties (El-Ansary et al., 1992; Czerpack & Skolska, 1982; Reddy & Somayojulu, 1981; Jund et al., 1971). The title compound is a coumarin substitued ylid synthesized as a part of our ongoing resaerch to study biological activities of this medicinally important class of compounds.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in a closely related compound (Schobert et al., 2000). In the title molecule, the central phosphorus atom adopts a tetrahedral geometry and is linked to three benzene rings and a planner coumarin moiety (maximum deviation of 0.005 (2) Å for C1 atom) via methylene carbonyl group. The bond lengths P1–C11 (1.7237 (14) Å) and C10–C11 (1.395 (2) Å), deviating from typical PC (1.67 Å) and C–C (1.50 Å) support the congugation of double bond with that of carbonyl group via keto enol tautomerization. The geomatry of the molecule is stablizied by an intramolecular C25—H25A···O3 hydrogen bonding interaction. The crystal structure is stabilized by intermolecular C2—H2A···O2, C7—H7A···O3, C22—H22A···O2 and C28—H28A···O1 interactions forming a three-dimensional network (Table 1 and Fig. 2).

Related literature top

For applications and biological activity of coumarin, see: Kabak et al. (1999); El-Ansary et al. (1992); Czerpack & Skolska (1982); Reddy & Somayojulu (1981); Jund et al. (1971). For the crystal structure of a related compound, see: Schobert et al. (2000).

Experimental top

The title compound was synthesized in two steps. In the first step, 3-((triphenylphosphinyl) acetyl)coumarin bromide was synthesized by treating 3-(bromoacetyl)coumarin (2 mmol, 0.534 g) in 10 ml of CH2Cl2 and triphenylphosphine (2 mmol, 0.524 g). The mixture was stirred for 3 hrs at room temperature. The solvent was evaporated and washed with diethyl ether, to obtain a yellow crystalline solid (96% yield, 1.14 g). In the next step 3-((triphenylphosphinyl) acetyl)coumarin bromide (1 mmol, 0.528 g) was dissolved in ethanol (10 ml), treated dropwise with potassium carbonate (1 mmol, 0.1 g) in 5 ml of H2O, stirred for 1.5 h at room temperature, diluted with 40 ml of H2O, and extracted with 4 × 10 ml of EtOAc. The combined organic phases were dried over MgSO4, filtered, and evaporated under reduced pressure to give the title compound as a yellow crystalline solid (90% yield, 0.403 g). Mp: 388–390 K.

Refinement top

H atoms on were positioned geometrically with C–H = 0.95 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—-H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen- bonding were omitted for clarity.
3-[2-(Triphenylphosphanylidene)acetyl]-2H-chromen-2-one top
Crystal data top
C29H21O3PZ = 2
Mr = 448.43F(000) = 468
Triclinic, P1Dx = 1.350 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7837 (12) ÅCell parameters from 7459 reflections
b = 10.3917 (14) Åθ = 3.2–26.4°
c = 12.2925 (17) ŵ = 0.16 mm1
α = 108.669 (4)°T = 100 K
β = 104.484 (4)°Block, yellow
γ = 99.746 (4)°0.46 × 0.41 × 0.34 mm
V = 1103.2 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4102 independent reflections
Radiation source: fine-focus sealed tube3716 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scanθmax = 25.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.932, Tmax = 0.949k = 1212
36693 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.6733P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4102 reflectionsΔρmax = 0.32 e Å3
299 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.041 (3)
Crystal data top
C29H21O3Pγ = 99.746 (4)°
Mr = 448.43V = 1103.2 (3) Å3
Triclinic, P1Z = 2
a = 9.7837 (12) ÅMo Kα radiation
b = 10.3917 (14) ŵ = 0.16 mm1
c = 12.2925 (17) ÅT = 100 K
α = 108.669 (4)°0.46 × 0.41 × 0.34 mm
β = 104.484 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
4102 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3716 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.949Rint = 0.045
36693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.07Δρmax = 0.32 e Å3
4102 reflectionsΔρmin = 0.40 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.22033 (4)0.28713 (4)0.37638 (3)0.01546 (12)
O10.54288 (11)0.37113 (10)0.89176 (9)0.0192 (2)
O20.32695 (11)0.37143 (11)0.78335 (9)0.0227 (2)
O30.32489 (11)0.06590 (10)0.47387 (9)0.0213 (2)
C10.67160 (16)0.33179 (15)0.90304 (13)0.0178 (3)
C20.78228 (17)0.39917 (16)1.01425 (13)0.0222 (3)
H2A0.76840.46801.08010.027*
C30.91346 (17)0.36328 (17)1.02647 (14)0.0251 (3)
H3A0.99150.40931.10140.030*
C40.93292 (18)0.26033 (17)0.93023 (14)0.0264 (3)
H4A1.02360.23660.94030.032*
C50.82116 (17)0.19312 (16)0.82082 (14)0.0235 (3)
H5A0.83460.12230.75600.028*
C60.68754 (16)0.22893 (15)0.80479 (13)0.0187 (3)
C70.57153 (16)0.17586 (15)0.69048 (12)0.0183 (3)
H7A0.57740.10180.62370.022*
C80.45432 (15)0.22872 (14)0.67566 (12)0.0166 (3)
C90.43323 (15)0.32761 (14)0.78122 (12)0.0171 (3)
C100.35227 (15)0.19030 (15)0.54841 (12)0.0168 (3)
C110.30703 (15)0.30007 (15)0.52151 (12)0.0174 (3)
H11A0.32500.38690.58690.021*
C120.05596 (15)0.14349 (15)0.29385 (13)0.0179 (3)
C130.01368 (16)0.10991 (16)0.17037 (13)0.0221 (3)
H13A0.02930.15850.12840.027*
C140.14561 (17)0.00551 (17)0.10911 (13)0.0244 (3)
H14A0.19420.01590.02560.029*
C150.20609 (17)0.06731 (17)0.16996 (14)0.0275 (4)
H15A0.29630.13880.12810.033*
C160.13548 (18)0.03636 (18)0.29201 (15)0.0303 (4)
H16A0.17650.08800.33290.036*
C170.00522 (16)0.06981 (17)0.35421 (13)0.0233 (3)
H17A0.04210.09210.43810.028*
C180.17083 (17)0.44966 (15)0.39085 (13)0.0198 (3)
C190.28216 (19)0.57658 (16)0.45100 (15)0.0274 (3)
H19A0.38090.57540.48210.033*
C200.2484 (2)0.70386 (18)0.46519 (16)0.0346 (4)
H20A0.32350.79020.50750.042*
C210.1052 (2)0.70496 (19)0.41764 (16)0.0370 (4)
H21A0.08300.79220.42450.044*
C220.0057 (2)0.5810 (2)0.36029 (15)0.0357 (4)
H22A0.10410.58330.32950.043*
C230.02628 (18)0.45223 (18)0.34736 (14)0.0260 (3)
H23A0.05030.36680.30900.031*
C240.33364 (15)0.26597 (15)0.27860 (12)0.0181 (3)
C250.41259 (18)0.16625 (18)0.27691 (15)0.0278 (4)
H25A0.40640.11250.32600.033*
C260.5006 (2)0.1454 (2)0.20336 (17)0.0350 (4)
H26A0.55490.07770.20280.042*
C270.50937 (18)0.22260 (18)0.13103 (15)0.0303 (4)
H27A0.57010.20830.08130.036*
C280.42996 (19)0.32023 (16)0.13125 (14)0.0287 (4)
H28A0.43520.37240.08080.034*
C290.34227 (17)0.34276 (16)0.20488 (13)0.0238 (3)
H29A0.28820.41050.20500.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0158 (2)0.01588 (19)0.01475 (19)0.00488 (14)0.00474 (14)0.00582 (14)
O10.0200 (5)0.0226 (5)0.0143 (5)0.0084 (4)0.0057 (4)0.0046 (4)
O20.0203 (5)0.0268 (6)0.0200 (5)0.0101 (4)0.0074 (4)0.0050 (4)
O30.0249 (5)0.0174 (5)0.0173 (5)0.0062 (4)0.0046 (4)0.0023 (4)
C10.0199 (7)0.0190 (7)0.0177 (7)0.0069 (6)0.0072 (6)0.0094 (6)
C20.0261 (8)0.0239 (7)0.0157 (7)0.0079 (6)0.0065 (6)0.0063 (6)
C30.0247 (8)0.0312 (8)0.0177 (7)0.0083 (7)0.0023 (6)0.0103 (6)
C40.0246 (8)0.0338 (9)0.0258 (8)0.0154 (7)0.0077 (6)0.0144 (7)
C50.0282 (8)0.0258 (8)0.0200 (7)0.0142 (6)0.0090 (6)0.0088 (6)
C60.0235 (7)0.0180 (7)0.0173 (7)0.0075 (6)0.0075 (6)0.0085 (6)
C70.0242 (7)0.0159 (7)0.0152 (7)0.0067 (6)0.0076 (6)0.0050 (5)
C80.0197 (7)0.0143 (6)0.0157 (7)0.0032 (5)0.0069 (6)0.0054 (5)
C90.0180 (7)0.0170 (7)0.0157 (7)0.0033 (5)0.0056 (5)0.0060 (5)
C100.0158 (7)0.0181 (7)0.0156 (7)0.0033 (5)0.0066 (5)0.0046 (5)
C110.0181 (7)0.0176 (7)0.0132 (6)0.0040 (5)0.0031 (5)0.0035 (5)
C120.0161 (7)0.0177 (7)0.0186 (7)0.0052 (5)0.0054 (5)0.0053 (6)
C130.0231 (8)0.0242 (7)0.0185 (7)0.0047 (6)0.0060 (6)0.0086 (6)
C140.0225 (8)0.0280 (8)0.0173 (7)0.0048 (6)0.0028 (6)0.0053 (6)
C150.0190 (7)0.0298 (8)0.0249 (8)0.0010 (6)0.0044 (6)0.0050 (7)
C160.0247 (8)0.0379 (9)0.0256 (8)0.0019 (7)0.0096 (7)0.0131 (7)
C170.0205 (7)0.0297 (8)0.0178 (7)0.0032 (6)0.0061 (6)0.0085 (6)
C180.0259 (8)0.0220 (7)0.0168 (7)0.0108 (6)0.0100 (6)0.0097 (6)
C190.0321 (9)0.0225 (8)0.0309 (8)0.0085 (7)0.0146 (7)0.0105 (7)
C200.0533 (11)0.0227 (8)0.0363 (9)0.0135 (8)0.0247 (9)0.0128 (7)
C210.0681 (13)0.0321 (9)0.0290 (9)0.0317 (9)0.0267 (9)0.0174 (8)
C220.0452 (10)0.0527 (11)0.0235 (8)0.0361 (9)0.0151 (8)0.0183 (8)
C230.0284 (8)0.0332 (9)0.0182 (7)0.0155 (7)0.0069 (6)0.0089 (6)
C240.0163 (7)0.0184 (7)0.0158 (7)0.0014 (5)0.0040 (5)0.0041 (5)
C250.0320 (9)0.0336 (9)0.0297 (8)0.0166 (7)0.0170 (7)0.0182 (7)
C260.0362 (10)0.0445 (10)0.0385 (10)0.0236 (8)0.0228 (8)0.0197 (8)
C270.0292 (9)0.0338 (9)0.0253 (8)0.0026 (7)0.0161 (7)0.0055 (7)
C280.0396 (9)0.0213 (8)0.0221 (8)0.0013 (7)0.0142 (7)0.0057 (6)
C290.0306 (8)0.0188 (7)0.0211 (7)0.0048 (6)0.0091 (6)0.0067 (6)
Geometric parameters (Å, º) top
P1—C111.7237 (14)C14—C151.384 (2)
P1—C121.8014 (15)C14—H14A0.9500
P1—C181.8019 (15)C15—C161.389 (2)
P1—C241.8171 (15)C15—H15A0.9500
O1—C11.3769 (17)C16—C171.387 (2)
O1—C91.3838 (17)C16—H16A0.9500
O2—C91.2064 (18)C17—H17A0.9500
O3—C101.2586 (17)C18—C231.389 (2)
C1—C21.386 (2)C18—C191.400 (2)
C1—C61.396 (2)C19—C201.385 (2)
C2—C31.382 (2)C19—H19A0.9500
C2—H2A0.9500C20—C211.380 (3)
C3—C41.397 (2)C20—H20A0.9500
C3—H3A0.9500C21—C221.377 (3)
C4—C51.377 (2)C21—H21A0.9500
C4—H4A0.9500C22—C231.395 (2)
C5—C61.403 (2)C22—H22A0.9500
C5—H5A0.9500C23—H23A0.9500
C6—C71.436 (2)C24—C251.391 (2)
C7—C81.350 (2)C24—C291.394 (2)
C7—H7A0.9500C25—C261.390 (2)
C8—C91.4610 (19)C25—H25A0.9500
C8—C101.5123 (19)C26—C271.383 (3)
C10—C111.395 (2)C26—H26A0.9500
C11—H11A0.9500C27—C281.378 (3)
C12—C171.388 (2)C27—H27A0.9500
C12—C131.398 (2)C28—C291.390 (2)
C13—C141.388 (2)C28—H28A0.9500
C13—H13A0.9500C29—H29A0.9500
C11—P1—C12114.64 (7)C15—C14—H14A120.1
C11—P1—C18106.69 (7)C13—C14—H14A120.1
C12—P1—C18108.00 (7)C14—C15—C16120.32 (14)
C11—P1—C24114.32 (7)C14—C15—H15A119.8
C12—P1—C24105.28 (6)C16—C15—H15A119.8
C18—P1—C24107.59 (7)C17—C16—C15120.08 (15)
C1—O1—C9122.54 (11)C17—C16—H16A120.0
O1—C1—C2117.19 (13)C15—C16—H16A120.0
O1—C1—C6120.27 (13)C16—C17—C12119.93 (14)
C2—C1—C6122.53 (13)C16—C17—H17A120.0
C3—C2—C1118.02 (14)C12—C17—H17A120.0
C3—C2—H2A121.0C23—C18—C19119.69 (14)
C1—C2—H2A121.0C23—C18—P1122.02 (12)
C2—C3—C4120.94 (14)C19—C18—P1118.27 (12)
C2—C3—H3A119.5C20—C19—C18120.03 (16)
C4—C3—H3A119.5C20—C19—H19A120.0
C5—C4—C3120.28 (14)C18—C19—H19A120.0
C5—C4—H4A119.9C21—C20—C19119.81 (17)
C3—C4—H4A119.9C21—C20—H20A120.1
C4—C5—C6120.17 (14)C19—C20—H20A120.1
C4—C5—H5A119.9C22—C21—C20120.71 (15)
C6—C5—H5A119.9C22—C21—H21A119.6
C1—C6—C5118.03 (13)C20—C21—H21A119.6
C1—C6—C7117.86 (13)C21—C22—C23120.09 (16)
C5—C6—C7123.85 (13)C21—C22—H22A120.0
C8—C7—C6121.52 (13)C23—C22—H22A120.0
C8—C7—H7A119.2C18—C23—C22119.60 (16)
C6—C7—H7A119.2C18—C23—H23A120.2
C7—C8—C9119.72 (13)C22—C23—H23A120.2
C7—C8—C10118.80 (12)C25—C24—C29119.40 (14)
C9—C8—C10121.38 (12)C25—C24—P1117.57 (11)
O2—C9—O1116.03 (12)C29—C24—P1123.02 (11)
O2—C9—C8126.74 (13)C26—C25—C24119.95 (15)
O1—C9—C8117.16 (12)C26—C25—H25A120.0
O3—C10—C11125.68 (13)C24—C25—H25A120.0
O3—C10—C8117.62 (12)C27—C26—C25120.35 (16)
C11—C10—C8116.45 (12)C27—C26—H26A119.8
C10—C11—P1123.73 (11)C25—C26—H26A119.8
C10—C11—H11A118.1C28—C27—C26119.91 (15)
P1—C11—H11A118.1C28—C27—H27A120.0
C17—C12—C13119.83 (13)C26—C27—H27A120.0
C17—C12—P1119.88 (11)C27—C28—C29120.33 (15)
C13—C12—P1120.23 (11)C27—C28—H28A119.8
C14—C13—C12120.01 (14)C29—C28—H28A119.8
C14—C13—H13A120.0C28—C29—C24120.05 (15)
C12—C13—H13A120.0C28—C29—H29A120.0
C15—C14—C13119.81 (14)C24—C29—H29A120.0
C9—O1—C1—C2170.11 (13)C24—P1—C12—C1344.96 (13)
C9—O1—C1—C69.35 (19)C17—C12—C13—C141.6 (2)
O1—C1—C2—C3178.61 (13)P1—C12—C13—C14175.62 (12)
C6—C1—C2—C30.8 (2)C12—C13—C14—C151.5 (2)
C1—C2—C3—C41.1 (2)C13—C14—C15—C160.0 (2)
C2—C3—C4—C50.3 (2)C14—C15—C16—C171.3 (3)
C3—C4—C5—C60.8 (2)C15—C16—C17—C121.2 (3)
O1—C1—C6—C5179.69 (12)C13—C12—C17—C160.3 (2)
C2—C1—C6—C50.3 (2)P1—C12—C17—C16176.96 (12)
O1—C1—C6—C75.4 (2)C11—P1—C18—C23121.10 (13)
C2—C1—C6—C7174.07 (13)C12—P1—C18—C232.62 (14)
C4—C5—C6—C11.1 (2)C24—P1—C18—C23115.81 (13)
C4—C5—C6—C7172.88 (14)C11—P1—C18—C1957.07 (13)
C1—C6—C7—C83.8 (2)C12—P1—C18—C19179.21 (11)
C5—C6—C7—C8170.22 (14)C24—P1—C18—C1966.02 (13)
C6—C7—C8—C98.9 (2)C23—C18—C19—C201.1 (2)
C6—C7—C8—C10167.60 (13)P1—C18—C19—C20179.28 (12)
C1—O1—C9—O2178.77 (12)C18—C19—C20—C211.4 (2)
C1—O1—C9—C84.13 (18)C19—C20—C21—C222.6 (3)
C7—C8—C9—O2171.75 (14)C20—C21—C22—C231.4 (2)
C10—C8—C9—O211.9 (2)C19—C18—C23—C222.3 (2)
C7—C8—C9—O15.00 (19)P1—C18—C23—C22179.58 (11)
C10—C8—C9—O1171.38 (12)C21—C22—C23—C181.1 (2)
C7—C8—C10—O338.62 (19)C11—P1—C24—C2547.08 (14)
C9—C8—C10—O3144.96 (13)C12—P1—C24—C2579.63 (13)
C7—C8—C10—C11135.98 (14)C18—P1—C24—C25165.36 (12)
C9—C8—C10—C1140.43 (18)C11—P1—C24—C29134.07 (12)
O3—C10—C11—P16.8 (2)C12—P1—C24—C2999.21 (13)
C8—C10—C11—P1167.32 (10)C18—P1—C24—C2915.79 (14)
C12—P1—C11—C1055.66 (14)C29—C24—C25—C260.9 (2)
C18—P1—C11—C10175.16 (12)P1—C24—C25—C26179.75 (13)
C24—P1—C11—C1066.05 (14)C24—C25—C26—C270.4 (3)
C11—P1—C12—C1711.30 (15)C25—C26—C27—C280.4 (3)
C18—P1—C12—C17107.47 (12)C26—C27—C28—C290.8 (3)
C24—P1—C12—C17137.81 (12)C27—C28—C29—C240.3 (2)
C11—P1—C12—C13171.47 (11)C25—C24—C29—C280.5 (2)
C18—P1—C12—C1369.77 (13)P1—C24—C29—C28179.31 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.952.453.378 (2)166
C7—H7A···O3ii0.952.283.171 (2)156
C22—H22A···O2iii0.952.483.398 (2)163
C25—H25A···O30.952.313.168 (2)150
C28—H28A···O1iv0.952.543.281 (2)135
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+1; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC29H21O3P
Mr448.43
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.7837 (12), 10.3917 (14), 12.2925 (17)
α, β, γ (°)108.669 (4), 104.484 (4), 99.746 (4)
V3)1103.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.46 × 0.41 × 0.34
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.932, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
36693, 4102, 3716
Rint0.045
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 1.07
No. of reflections4102
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.40

Computer programs: APEX2 (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.952.453.378 (2)166
C7—H7A···O3ii0.952.283.171 (2)156
C22—H22A···O2iii0.952.483.398 (2)163
C25—H25A···O30.952.313.168 (2)150
C28—H28A···O1iv0.952.543.281 (2)135
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+1; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1.
 

References

First citationBruker (2000). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCzerpack, R. & Skolska, S. (1982). Med. Dosw. Microbiol. 34, 37–50.
First citationEl-Ansary, S. L., Aly, E. I. & Halem, M. A. (1992). Egypt. J. Pharm. Sci. 33, 379–390.  CAS
First citationJund, L., Corse, J., King, A. S., Bayne, H. & Mihrag, K. (1971). Phytochemistry, 10, 2971–2974.
First citationKabak, M., Elmali, A. & Elerman, Y. (1999). J. Mol. Struct. 477, 151–158.  Web of Science CSD CrossRef CAS
First citationReddy, Y. D. & Somayojulu, V. V. (1981). J. Indian Chem. Soc. 58, 599–601.  CAS
First citationSchobert, R., Seigfried, S., Nieuwenhuyzen, M., Milius, W. & Hampel, F. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1723–1730.  Web of Science CSD CrossRef
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds