supplementary materials


qk2049 scheme

Acta Cryst. (2013). E69, m73-m74    [ doi:10.1107/S1600536812051422 ]

Di-[mu]-chlorido-bis[(2,2'-bipyridine-5,5'-dicarboxylic acid-[kappa]2N,N')chloridocopper(II)] dimethylformamide tetrasolvate

S. Øien, D. S. Wragg, K. P. Lillerud and M. Tilset

Abstract top

In the title compound, [Cu2Cl4(C12H8N2O4)2]·4C3H7NO, which contains a chloride-bridged centrosymmetric CuII dimer, the CuII atom is in a distorted square-pyramidal 4 + 1 coordination geometry defined by the N atoms of the chelating 2,2'-bipyridine ligand, a terminal chloride and two bridging chloride ligands. Of the two independent dimethylformamide molecules, one is hydrogen bonded to a single -COOH group, while one links two adjacent -COOH groups via a strong accepted O-H...O and a weak donated C(O)-H...O hydrogen bond. Two of these last molecules and the two -COOH groups form a centrosymmetric hydrogen-bonded ring in which the CH=O and the -COOH groups by disorder adopt two alternate orientations in a 0.44:0.56 ratio. These hydrogen bonds link the CuII complex molecules and the dimethylformamide solvent molecules into infinite chains along [-111]. Slipped [pi]-[pi] stacking interactions between two centrosymmetric pyridine rings (centroid-centroid distance = 3.63 Å) contribute to the coherence of the structure along [0-11].

Comment top

In recent years, linear dicarboxylic acids have attracted much attention for their usage as linkers in metal-organic frameworks. This diverse class of porous materials can be utilized as heterogeneous catalysts or selective adsorbents, by incorporating active species onto the linkers. The reported compound (Fig. 1) consists of centrosymmetric dinuclear Cu complexes hydrogen bonded to four DMF molecules via O—H···O and C—H···O links. These Cu dimers and the DMF molecules create hydrogen bonded chains parallell to [111] (Fig. 2). The copper atoms have a slightly distorted square-pyramidal coordination by two N and three Cl atoms (two short and one long Cu—Cl bonds;Table 1), as observed in similar copper dimer complexes reported for instance by Goddard et al. (1990),Tynan et al. (2005), Han et al. (2008), Liu et al. (2009) and Qi et al. (2009). Fig. 1 and Fig. 2 show that the COOH group of O1–C7–O2 and the second DMF molecule (C21, O6A/O6B, N21, C15, C16) form a centrosymmetric hydrogen bond ring with alternating strong O—H···O(DMF) and weak C(DMF)—H···O hydrogen bonds. Due to a synchronous orientation disorder of the COOH groups and the DMF molecules the hydrogen bonds in these rings can adopt a clock or an anticlockwise sense in 0.44/0.56 ratio. Consequently, the observed bond distances C7—O1 = 1.261 (3) Å and C7—O2 = 1.264 (3) Å are approximately an average of the single and double bond distances of an ordered COOH group (e.g. C11O4 = 1.209 (3) and C11—O3 = 1.311 (3) Å in the title compound). Apart from hydrogen bonding the structure of the title compound is held together by slipped π-π stacking interactions between centrosymmetric pairs of pyridine ring 1 (N1–C1–C8–C9–C10–C12). They show stacking distances of ca. 3.33 Å which are effective along [011] (Fig. 3). A polymeric copper(II) complex with the same organoligand as in (I) but with a Cu/Cl ratio of 1:1 has been reported by Zhao et al. (2010).

Related literature top

For related structures with similar coordination geometry around the copper atoms, see: Goddard et al. (1990); Tynan et al. (2005); Han et al. (2008); Liu et al. (2009); Qi et al. (2009). For other related structures of chloro bipyridine copper complexes, see: Wang et al. (2004); Zhao et al. (2010).

Experimental top

5,5'-dimethyl-2,2'-bipyridine was purchased from Sigma-Aldrich and oxidized with K2Cr2O7 to 2,2'-bipyridine-5,5'-dicarboxylic acid according to literature methods. CuCl2.2H2O (>99%, Sigma-Aldrich) and dimethylformamide (DMF) (>99.5%, Merck) were used as received. 100 mg (0.41 mmol) H2bpydc was dissolved in 10 ml of water, using a minimal amount of KOH. 70 mg (0.41 mmol) CuCl2.2H2O was dissolved in water. When the two solutions were combined, a blue precipitate was immediately formed. Dilute HCl was added until pH was 4. The blue microcrystalline precipitate (96 mg) was recovered, dried and dissolved in 5 ml of DMF along with 50 µL conc. HCl, giving a green solution. 1 ml of the solution was transferred to a small vial. The crystals were precipitated by vapor diffusion, using water as antisolvent.

Refinement top

All H atoms were placed in geometrically idealized positions, with Csp2—H = 0.93 Å, Csp3—H = 0.96 Å, O—H = 0.82 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(Csp2) or 1.5Ueq(Csp3,O). The atoms O6 A/B, C21 A/B and H21 A/B of one DMF molecule and H1/2 of a COOH group are disordered over 2 sites with refined occupancies of 0.437 (4) (part A and H1) and 0.563 (4) (part B and H2).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006) and Materials Studio (Accelrys, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms showing also the disorder of one COOH group (C7 etc.) and one DMF molecule (C21A etc).
[Figure 2] Fig. 2. The packing of (I), showing the hydrogen bonded chains. Hydrogen atoms (except amide and carboxylic) are omitted and hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Slipped π-π stacking interaction between the pyridine rings 1 (N1–C1–C8–C9–C10–C12) of two neighboring Cu complexes related by inversion (I).
Di-µ-chlorido-bis[(2,2'-bipyridine-5,5'-dicarboxylic acid-κ2N,N')chloridocopper(II)] dimethylformamide tetrasolvate top
Crystal data top
[Cu2Cl4(C12H8N2O4)2]·4C3H7NOZ = 1
Mr = 1049.66F(000) = 538
Triclinic, P1Dx = 1.627 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.917 (5) ÅCell parameters from 3373 reflections
b = 11.030 (6) Åθ = 2.5–27.4°
c = 12.179 (7) ŵ = 1.32 mm1
α = 83.171 (6)°T = 100 K
β = 73.903 (6)°Prism, green
γ = 68.332 (6)°0.20 × 0.15 × 0.02 mm
V = 1069.4 (11) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4824 independent reflections
Radiation source: fine-focus sealed tube3969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 27.9°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.789, Tmax = 0.974k = 1414
9231 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0259P)2 + 0.590P]
where P = (Fo2 + 2Fc2)/3
4824 reflections(Δ/σ)max = 0.001
295 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cu2Cl4(C12H8N2O4)2]·4C3H7NOγ = 68.332 (6)°
Mr = 1049.66V = 1069.4 (11) Å3
Triclinic, P1Z = 1
a = 8.917 (5) ÅMo Kα radiation
b = 11.030 (6) ŵ = 1.32 mm1
c = 12.179 (7) ÅT = 100 K
α = 83.171 (6)°0.20 × 0.15 × 0.02 mm
β = 73.903 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
4824 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3969 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 0.974Rint = 0.021
9231 measured reflectionsθmax = 27.9°
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.068Δρmax = 0.43 e Å3
S = 1.02Δρmin = 0.37 e Å3
4824 reflectionsAbsolute structure: ?
295 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5061 (2)0.75714 (18)0.49804 (17)0.0142 (4)
C20.5665 (2)0.64520 (18)0.42163 (16)0.0141 (4)
C30.7981 (2)0.47716 (18)0.32901 (16)0.0150 (4)
H3A0.91280.43290.31120.018*
C40.6997 (3)0.43285 (18)0.28504 (17)0.0157 (4)
C50.5292 (2)0.49803 (19)0.31204 (17)0.0168 (4)
H50.46110.46980.28380.020*
C60.4604 (3)0.60601 (19)0.38163 (17)0.0170 (4)
H60.34590.65110.40100.020*
C70.7786 (3)0.31742 (19)0.20877 (17)0.0174 (4)
C80.3416 (3)0.84090 (19)0.52720 (17)0.0175 (4)
H80.26200.82920.49800.021*
C90.2973 (3)0.94225 (19)0.60049 (18)0.0178 (4)
H90.18841.00140.61920.021*
C100.4173 (3)0.95414 (18)0.64538 (17)0.0161 (4)
C110.3799 (3)1.0583 (2)0.72813 (18)0.0202 (4)
C120.5801 (3)0.86824 (19)0.61159 (17)0.0164 (4)
H120.66080.87740.64120.020*
C150.3041 (4)0.7442 (2)1.1227 (2)0.0452 (7)
H15A0.33180.72111.04410.068*
H15B0.23960.69521.16930.068*
H15C0.40470.72481.14650.068*
C160.1570 (3)0.9324 (3)1.2499 (2)0.0327 (6)
H16A0.08441.02201.25070.049*
H16B0.25390.92631.27340.049*
H16C0.09920.88181.30160.049*
C180.2042 (5)1.4697 (3)1.0417 (2)0.0590 (10)
H18A0.16081.50520.97640.088*
H18B0.29551.49711.03950.088*
H18C0.11801.50031.11030.088*
C190.2560 (3)1.2678 (2)0.95630 (19)0.0272 (5)
H190.29551.17710.96020.033*
C200.3184 (3)1.2590 (3)1.1386 (2)0.0434 (7)
H20A0.35791.16681.12650.065*
H20B0.22751.28111.20590.065*
H20C0.40731.28271.14830.065*
C21A0.1675 (3)0.9574 (2)1.04753 (19)0.0242 (5)0.437 (4)
H21A0.10171.04451.06200.029*0.437 (4)
O6A0.2100 (5)0.9214 (3)0.9473 (3)0.0255 (11)0.437 (4)
C21B0.1675 (3)0.9574 (2)1.04753 (19)0.0242 (5)0.563 (4)
H21B0.19830.91650.97810.029*0.563 (4)
O6B0.0912 (4)1.0793 (3)1.0485 (2)0.0304 (9)0.563 (4)
N10.6254 (2)0.77252 (15)0.53787 (14)0.0139 (3)
N20.7337 (2)0.58081 (15)0.39584 (14)0.0140 (3)
N40.2618 (3)1.32944 (19)1.04017 (16)0.0293 (4)
N210.2077 (2)0.88264 (17)1.13500 (15)0.0227 (4)
O10.6831 (2)0.27950 (15)0.17378 (14)0.0278 (4)
H10.73870.21610.13290.042*0.437 (4)
O20.93592 (19)0.26688 (15)0.18333 (14)0.0293 (4)
H20.96620.20470.14150.044*0.563 (4)
O30.23516 (19)1.15187 (14)0.73405 (13)0.0233 (3)
H30.22151.20660.77950.035*
O40.4777 (2)1.05397 (17)0.78151 (15)0.0347 (4)
O50.2021 (2)1.32076 (15)0.87227 (13)0.0337 (4)
Cl10.97529 (6)0.78040 (5)0.52466 (4)0.01868 (11)
Cl20.88428 (6)0.47339 (5)0.63849 (4)0.01680 (11)
Cu10.86273 (3)0.65512 (2)0.46635 (2)0.01421 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0145 (10)0.0134 (9)0.0158 (10)0.0059 (8)0.0049 (8)0.0017 (7)
C20.0139 (10)0.0138 (9)0.0148 (10)0.0054 (8)0.0038 (8)0.0010 (7)
C30.0136 (10)0.0149 (9)0.0153 (10)0.0035 (8)0.0042 (8)0.0005 (8)
C40.0191 (10)0.0127 (9)0.0153 (10)0.0062 (8)0.0034 (8)0.0001 (7)
C50.0177 (10)0.0170 (10)0.0187 (10)0.0082 (8)0.0067 (8)0.0007 (8)
C60.0137 (10)0.0173 (10)0.0199 (11)0.0050 (8)0.0050 (8)0.0000 (8)
C70.0195 (11)0.0152 (9)0.0159 (10)0.0055 (8)0.0030 (8)0.0006 (8)
C80.0151 (10)0.0181 (10)0.0209 (11)0.0062 (8)0.0064 (8)0.0013 (8)
C90.0139 (10)0.0158 (10)0.0207 (11)0.0031 (8)0.0027 (8)0.0011 (8)
C100.0180 (10)0.0138 (9)0.0151 (10)0.0054 (8)0.0023 (8)0.0000 (8)
C110.0207 (11)0.0207 (10)0.0176 (11)0.0079 (9)0.0002 (9)0.0046 (8)
C120.0167 (10)0.0174 (10)0.0164 (10)0.0071 (8)0.0042 (8)0.0018 (8)
C150.0600 (19)0.0260 (13)0.0336 (15)0.0043 (13)0.0032 (14)0.0031 (11)
C160.0285 (13)0.0451 (15)0.0223 (12)0.0123 (11)0.0022 (10)0.0053 (11)
C180.116 (3)0.0361 (16)0.0334 (16)0.0372 (18)0.0143 (18)0.0073 (13)
C190.0318 (13)0.0209 (11)0.0236 (12)0.0049 (10)0.0021 (10)0.0068 (9)
C200.0328 (15)0.0567 (18)0.0327 (15)0.0025 (13)0.0144 (12)0.0170 (13)
C21A0.0257 (12)0.0203 (11)0.0270 (12)0.0070 (9)0.0061 (10)0.0068 (9)
O6A0.035 (2)0.0194 (19)0.020 (2)0.0058 (16)0.0081 (16)0.0050 (14)
C21B0.0257 (12)0.0203 (11)0.0270 (12)0.0070 (9)0.0061 (10)0.0068 (9)
O6B0.0358 (18)0.0216 (15)0.0283 (17)0.0037 (13)0.0062 (13)0.0056 (12)
N10.0125 (8)0.0136 (8)0.0165 (8)0.0046 (6)0.0047 (7)0.0003 (6)
N20.0132 (8)0.0138 (8)0.0152 (8)0.0047 (7)0.0040 (7)0.0001 (6)
N40.0333 (12)0.0327 (11)0.0208 (10)0.0114 (9)0.0017 (9)0.0097 (8)
N210.0223 (10)0.0221 (9)0.0213 (10)0.0068 (8)0.0020 (8)0.0032 (7)
O10.0317 (9)0.0262 (8)0.0302 (9)0.0137 (7)0.0056 (7)0.0114 (7)
O20.0210 (9)0.0259 (8)0.0344 (9)0.0000 (7)0.0033 (7)0.0114 (7)
O30.0269 (9)0.0170 (7)0.0219 (8)0.0014 (6)0.0053 (7)0.0074 (6)
O40.0239 (9)0.0420 (10)0.0379 (10)0.0025 (8)0.0100 (8)0.0239 (8)
O50.0581 (12)0.0210 (8)0.0189 (8)0.0089 (8)0.0109 (8)0.0028 (7)
Cl10.0153 (2)0.0184 (2)0.0249 (3)0.00683 (19)0.0069 (2)0.00293 (19)
Cl20.0120 (2)0.0202 (2)0.0173 (2)0.00488 (19)0.00233 (18)0.00277 (19)
Cu10.01079 (13)0.01549 (12)0.01676 (13)0.00388 (9)0.00401 (9)0.00304 (9)
Geometric parameters (Å, º) top
C1—N11.355 (3)C15—H15C0.9600
C1—C81.386 (3)C16—N211.453 (3)
C1—C21.478 (3)C16—H16A0.9600
C2—N21.355 (3)C16—H16B0.9600
C2—C61.388 (3)C16—H16C0.9600
C3—N21.333 (3)C18—N41.439 (3)
C3—C41.391 (3)C18—H18A0.9600
C3—H3A0.9300C18—H18B0.9600
C4—C51.382 (3)C18—H18C0.9600
C4—C71.495 (3)C19—O51.242 (3)
C5—C61.388 (3)C19—N41.315 (3)
C5—H50.9300C19—H190.9300
C6—H60.9300C20—N41.456 (3)
C7—O11.261 (3)C20—H20A0.9600
C7—O21.264 (3)C20—H20B0.9600
C8—C91.385 (3)C20—H20C0.9600
C8—H80.9300C21A—O6A1.241 (4)
C9—C101.381 (3)C21A—N211.315 (3)
C9—H90.9300C21A—H21A0.9300
C10—C121.386 (3)N1—Cu12.0337 (18)
C10—C111.501 (3)N2—Cu12.0361 (17)
C11—O41.209 (3)O1—H10.8200
C11—O31.311 (3)O2—H20.8200
C12—N11.339 (3)O3—H30.8200
C12—H120.9300Cl1—Cu12.2525 (10)
C15—N211.451 (3)Cl2—Cu1i2.2804 (10)
C15—H15A0.9600Cl2—Cu12.7183 (12)
C15—H15B0.9600
N1—C1—C8121.94 (18)H16A—C16—H16C109.5
N1—C1—C2114.49 (17)H16B—C16—H16C109.5
C8—C1—C2123.57 (18)N4—C18—H18A109.5
N2—C2—C6122.18 (18)N4—C18—H18B109.5
N2—C2—C1114.96 (16)H18A—C18—H18B109.5
C6—C2—C1122.83 (18)N4—C18—H18C109.5
N2—C3—C4122.29 (19)H18A—C18—H18C109.5
N2—C3—H3A118.9H18B—C18—H18C109.5
C4—C3—H3A118.9O5—C19—N4125.3 (2)
C5—C4—C3118.91 (18)O5—C19—H19117.3
C5—C4—C7120.96 (18)N4—C19—H19117.3
C3—C4—C7120.13 (18)N4—C20—H20A109.5
C4—C5—C6119.42 (18)N4—C20—H20B109.5
C4—C5—H5120.3H20A—C20—H20B109.5
C6—C5—H5120.3N4—C20—H20C109.5
C5—C6—C2118.45 (19)H20A—C20—H20C109.5
C5—C6—H6120.8H20B—C20—H20C109.5
C2—C6—H6120.8O6A—C21A—N21125.4 (3)
O1—C7—O2125.27 (19)O6A—C21A—H21A117.3
O1—C7—C4117.40 (18)N21—C21A—H21A117.3
O2—C7—C4117.32 (18)C12—N1—C1118.42 (17)
C9—C8—C1119.05 (19)C12—N1—Cu1126.23 (14)
C9—C8—H8120.5C1—N1—Cu1115.10 (13)
C1—C8—H8120.5C3—N2—C2118.75 (17)
C10—C9—C8118.98 (19)C3—N2—Cu1126.29 (14)
C10—C9—H9120.5C2—N2—Cu1114.96 (13)
C8—C9—H9120.5C19—N4—C18121.5 (2)
C9—C10—C12119.08 (18)C19—N4—C20121.4 (2)
C9—C10—C11122.74 (18)C18—N4—C20117.0 (2)
C12—C10—C11118.17 (18)C21A—N21—C15121.8 (2)
O4—C11—O3124.97 (19)C21A—N21—C16122.4 (2)
O4—C11—C10121.63 (19)C15—N21—C16115.8 (2)
O3—C11—C10113.39 (18)C7—O1—H1109.5
N1—C12—C10122.42 (18)C7—O2—H2109.5
N1—C12—H12118.8C11—O3—H3109.5
C10—C12—H12118.8Cu1i—Cl2—Cu190.20 (4)
N21—C15—H15A109.5N1—Cu1—N279.91 (8)
N21—C15—H15B109.5N1—Cu1—Cl192.97 (6)
H15A—C15—H15B109.5N2—Cu1—Cl1166.75 (5)
N21—C15—H15C109.5N1—Cu1—Cl2i171.33 (5)
H15A—C15—H15C109.5N2—Cu1—Cl2i93.45 (7)
H15B—C15—H15C109.5Cl1—Cu1—Cl2i92.41 (5)
N21—C16—H16A109.5N1—Cu1—Cl296.09 (5)
N21—C16—H16B109.5N2—Cu1—Cl293.10 (6)
H16A—C16—H16B109.5Cl1—Cu1—Cl298.80 (4)
N21—C16—H16C109.5Cl2i—Cu1—Cl289.80 (4)
N1—C1—C2—N24.8 (2)C8—C1—N1—Cu1171.55 (15)
C8—C1—C2—N2174.95 (18)C2—C1—N1—Cu18.2 (2)
N1—C1—C2—C6173.40 (18)C4—C3—N2—C20.1 (3)
C8—C1—C2—C66.9 (3)C4—C3—N2—Cu1179.64 (14)
N2—C3—C4—C50.4 (3)C6—C2—N2—C30.6 (3)
N2—C3—C4—C7178.92 (17)C1—C2—N2—C3178.81 (16)
C3—C4—C5—C60.3 (3)C6—C2—N2—Cu1179.13 (15)
C7—C4—C5—C6179.00 (18)C1—C2—N2—Cu10.9 (2)
C4—C5—C6—C20.2 (3)O5—C19—N4—C180.3 (4)
N2—C2—C6—C50.7 (3)O5—C19—N4—C20176.4 (2)
C1—C2—C6—C5178.74 (18)O6A—C21A—N21—C152.5 (4)
C5—C4—C7—O12.5 (3)O6A—C21A—N21—C16178.3 (3)
C3—C4—C7—O1178.22 (18)C12—N1—Cu1—N2179.08 (17)
C5—C4—C7—O2176.55 (19)C1—N1—Cu1—N26.78 (13)
C3—C4—C7—O22.7 (3)C12—N1—Cu1—Cl112.18 (16)
N1—C1—C8—C90.9 (3)C1—N1—Cu1—Cl1161.96 (13)
C2—C1—C8—C9179.35 (18)C12—N1—Cu1—Cl287.00 (16)
C1—C8—C9—C102.2 (3)C1—N1—Cu1—Cl298.86 (14)
C8—C9—C10—C123.1 (3)C3—N2—Cu1—N1175.67 (17)
C8—C9—C10—C11178.12 (19)C2—N2—Cu1—N14.05 (13)
C9—C10—C11—O4166.9 (2)C3—N2—Cu1—Cl1126.0 (2)
C12—C10—C11—O414.3 (3)C2—N2—Cu1—Cl154.2 (3)
C9—C10—C11—O314.0 (3)C3—N2—Cu1—Cl2i9.96 (16)
C12—C10—C11—O3164.78 (18)C2—N2—Cu1—Cl2i170.32 (13)
C9—C10—C12—N10.9 (3)C3—N2—Cu1—Cl280.03 (16)
C11—C10—C12—N1179.79 (18)C2—N2—Cu1—Cl299.69 (13)
C10—C12—N1—C12.2 (3)Cu1i—Cl2—Cu1—N1173.62 (5)
C10—C12—N1—Cu1171.82 (14)Cu1i—Cl2—Cu1—N293.44 (6)
C8—C1—N1—C123.1 (3)Cu1i—Cl2—Cu1—Cl192.40 (5)
C2—C1—N1—C12177.18 (16)Cu1i—Cl2—Cu1—Cl2i0.0
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O6Bii0.821.722.515 (3)161
O1—H1···O6Aiii0.821.752.536 (4)161
O3—H3···O50.821.722.541 (2)177
C21A—H21A···O2iv0.932.713.591 (3)158
C21B—H21B···O1iii0.932.723.603 (3)159
Symmetry codes: (ii) x+1, y1, z1; (iii) x+1, y+1, z+1; (iv) x1, y+1, z+1.
Selected bond lengths (Å) top
N1—Cu12.0337 (18)Cl2—Cu1i2.2804 (10)
N2—Cu12.0361 (17)Cl2—Cu12.7183 (12)
Cl1—Cu12.2525 (10)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O6Bii0.821.722.515 (3)161.4
O1—H1···O6Aiii0.821.752.536 (4)160.5
O3—H3···O50.821.722.541 (2)177.4
C21A—H21A···O2iv0.932.713.591 (3)157.8
C21B—H21B···O1iii0.932.723.603 (3)159.1
Symmetry codes: (ii) x+1, y1, z1; (iii) x+1, y+1, z+1; (iv) x1, y+1, z+1.
references
References top

Accelrys (2010). Materials Studio. Accelrys Inc., San Diego, California, USA.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Goddard, R., Hemalatha, B. & Rajasekharan, M. V. (1990). Acta Cryst. C46, 33–35.

Han, K.-F., Wu, H.-Y., Wang, Z.-M. & Guo, H.-Y. (2008). Acta Cryst. E64, m1607–m1608.

Liu, Y.-F., Rong, D.-F., Xia, H.-T. & Wang, D.-Q. (2009). Acta Cryst. E65, m1492.

Qi, Z.-P., Wang, A.-D., Zhang, H. & Wang, X.-X. (2009). Acta Cryst. E65, m1507–m1508.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tynan, E., Jensen, P., Lees, A. C., Moubaraki, B., Murray, K. S. & Kruger, P. E. (2005). CrystEngComm, 7, 90–95.

Wang, Y.-Q., Bi, W.-H., Li, X. & Cao, R. (2004). Acta Cryst. E60, m876–m877.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Zhao, J., Shi, D., Cheng, H., Chen, L., Ma, P. & Niu, J. (2010). Inorg. Chem. Commun. 13, 822–827.