organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o159-o160

2-Chloro­benzene-1,4-diaminium bis­­(di­hydrogenphosphate)

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, and bDepartment of Chemistry, Youngstown State University, One University Plaza, Youngstown, Ohio 44555-3663, USA
*Correspondence e-mail: cherif_bennasr@yahoo.fr

(Received 1 December 2012; accepted 20 December 2012; online 4 January 2013)

The asymmetric unit of the title salt, C6H9ClN22+·2H2PO4, contains two dihydrogenphosphate anions and one 2-chloro­benzene-1,4-diaminium dication. The H2PO4 anions are inter­connected through strong O—H⋯O hydrogen bonds to form two-dimensional infinite layers parallel to (001). The organic entities are anchored to the inorganic layers through N—H⋯O hydrogen bonds, and through weak C—Cl⋯O halogen bonds [3.159 (2) Å, 140.48 (7)°]. No ππ stacking inter­actions between neighboring aromatic rings or C—H⋯π inter­actions towards them are observed. Minor disorder is observed for the Cl atom and one hy­droxy group [minor-component occupancy = 3.29 (9)%].

Related literature

For common applications of organic phosphate complexes, see: Masse et al. (1993[Masse, R., Bagieu-Beucher, M., Pecaut, J., Levy, J. P. & Zyss, J. (1993). Nonlinear Opt. 5, 413-423.]). For network geometries, see: Rayes et al. (2004[Rayes, A., Ben Nasr, C. & Rzaigui, M. (2004). Mater. Res. Bull. 39, 1113-1121.]); Oueslati et al. (2005[Oueslati, A., Ben Nasr, C., Durif, A. & Lefebvre, F. (2005). Mater. Res. Bull. 39, 970-980.]). For reference structural data, see: Kaabi et al. (2004[Kaabi, K., Ben Nasr, C. & Lefebvre, F. (2004). Mater. Res. Bull. 39, 205-215.]); Chtioui & Jouini (2006[Chtioui, A. & Jouini, A. (2006). Mater. Res. Bull. 41, 569-575.]). For halogen bonding, see: Metrangolo & Resnati (2001[Metrangolo, P. & Resnati, G. (2001). Chem. Eur. J. 7, 2511-2519.], 2008[Metrangolo, P. & Resnati, G. (2008). Science (Washington, DC), 321, 918-919.]); Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9ClN22+·2H2PO4

  • Mr = 338.57

  • Orthorhombic, P 21 21 21

  • a = 7.0084 (8) Å

  • b = 7.9404 (9) Å

  • c = 23.064 (3) Å

  • V = 1283.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 100 K

  • 0.55 × 0.52 × 0.51 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.689, Tmax = 0.746

  • 11671 measured reflections

  • 4134 independent reflections

  • 4060 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.064

  • S = 1.11

  • 4134 reflections

  • 186 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1694 Friedel pairs

  • Flack parameter: 0.11 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O7i 0.91 1.76 2.6726 (15) 175
N1—H1B⋯O4ii 0.91 1.88 2.7807 (15) 172
N1—H1C⋯O2iii 0.91 2.05 2.9155 (15) 158
N2—H2A⋯O8 0.91 1.88 2.7886 (15) 178
N2—H2B⋯O7iv 0.91 1.84 2.7450 (15) 178
N2—H2C⋯O4 0.91 1.75 2.6545 (15) 175
O1—H1D⋯O2v 0.84 1.90 2.6525 (14) 148
O3—H3A⋯O8vi 0.84 1.79 2.5863 (14) 158
O5—H5⋯O8vii 0.84 2.00 2.6585 (14) 134
O6—H6A⋯O2 0.84 1.79 2.5841 (14) 156
O6B—H6B⋯O2 0.84 1.84 2.63 (3) 157
Symmetry codes: (i) [-x+3, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+3, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x-1, y, z; (v) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1]; (vi) x, y-1, z; (vii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In organic-cation monophosphates, the phosphate anions generally observed are the partially protonated acidic ones H2PO4- or HPO42-. In the solid state such anions are generally interconnected through strong hydrogen bonds so as to build infinite networks with various geometries (Rayes et al., 2004; Oueslati et al., 2005). If these organic-cation monophosphates hybrid materials crystallize in a noncentrosymmetric setting they are of particular interest as nonlinear optical (NLO) materials (Masse et al., 1993). The present work is devoted to the structure of an organic-cation hydrogenphosphate, C6H9ClN2(H2PO4)2, formed by the reaction of 2-chlorobenzene-1,4-diamine with orthophosphoric acid, which crystallized in a non-centrosymmetric setting.

The title organic-inorganic hybrid material, while made from achiral components, crystallizes in the chiral space group P212121. The crystal investigated is partially racemically twinned, with a twinning ratio of 0.89 (4) to 0.11 (4). Its structure consists of one 2-chlorobenzene-1,4-diaminium dication and two crystallographically distinct H2PO4- anions (Fig. 1). The chlorine atom is disordered over two chemically equivalent positions with a small but noticable presence of the second moiety (refined value 3.29 (9)%). Associated with this disorder is disorder of one phosphate hydroxyl group of one of the H2P(2)O4- anions, O6. Where not mentioned otherwise, this disorder is ignored in the following more detailed discussion of the structure.

The HPO42- anions show two types of P—O distances depending on whether the oxygen atoms are hydrogen donors or acceptors. As expected, the P—OH distances, varying between 1.54 (3) and 1.581 (1) Å, are significantly longer than the other P—O distances ranging from 1.500 (1) to 1.516 (1) Å. This is in agreement with the literature data (Chtioui & Jouini, 2006; Kaabi et al., 2004). Figure 2 shows that the H2PO4- anions are interconnected through O—H···O hydrogen bonds to form a two dimensional layer spreading parallel to the (0 0 1) plane at z = 0, 1/2 and 1 (Fig. 3). The organic cations, assembled in layers parallel to the H2PO4- anions at z = 1/4 and 3/4, are anchored to the inorganic layers through N—H···O hydrogen bonds whose geometrical characteristics are given in Table 1. The projection of the whole arrangement along the c-axis (Fig. 3) shows the alternating cationic and anionic layers. The structure also features a weak C—Cl···O halogen bond between the chlorine atom and one of the H2PO4- phosphate ions, a type of interaction that has recently attracted high levels of interest due to the observation of such interactions between halogenated compounds and the phosphate moieties in DNA (see e.g. Metrangolo & Resnati, 2008). In the title compound the Cl···O distance between Cl1 and O3i is 3.159 (2) Å, the C—Cl···O angle 140.48 (7)° (symmetry operator (i) -x + 3, y + 1/2, -z + 3/2), the equivalent values for the interaction of the minor occupied Cl atom Cl1B with O6B are 2.91 (5) Å and 130 (1)°. While the Cl···O distances are shorter than the sum of the van der Waals radii of chlorine and oxygen (ca 3.3 Å, Bondi, 1964), the angles observed are on the small side for C—Cl···O halogen bonds (160–180°, see e.g. Politzer et al., 2007; Metrangolo & Resnati, 2001), indicating that the interactions observed are quite weak and more likely a result of the stronger hydrogen bonding interactions rather than one of the major driving forces determining the outcome of the assembly of the structural components of the title compound. No π-π stacking interactions between neighboring aromatic rings or significant C—H···π interactions towards them are observed.

Related literature top

For common applications of organic phosphate complexes, see: Masse et al. (1993). For network geometries, see: Rayes et al. (2004); Oueslati et al. (2005). For reference structural data, see: Kaabi et al. (2004); Chtioui & Jouini (2006). For halogen bonding, see: Metrangolo & Resnati (2001, 2008); Politzer et al. (2007). For van der Waals radii, see: Bondi (1964).

Experimental top

Crystals of the title compound were prepared at room temperature by slow addition of a solution of orthophosphoric acid (6 mmol in 20 ml of water) to an alcoholic solution of 2-chlorobenzene-1,4-diamine (3 mmol in 20 ml of ethanol). The acid was added until the alcoholic solution became turbid. After filtration, the solution was allowed to slowly evaporate at room temperature over several days leading to formation of transparent prismatic crystals with suitable dimensions for single-crystal structural analysis (yield 58%). The crystals are stable for months under normal conditions of temperature and humidity.

Refinement top

The chlorine atom is disordered over two chemically equivalent positions with a small but noticable presence of the second moiety (refined value 3.29 (9)%). Associated with this disorder is disorder of one of the phosphate hydroxyl groups, O6. The minor moiety chlorine and oxygen atoms were constrained to have the same ADPs as their major moiety counterparts. Due to the low prevalence of the minor moiety no disorder was modeled for the aromatic ring the Cl atom is bonded to, despite of the obviously unrealistic C—C—Cl angles for the minor Cl atom.

All non hydrogen atoms were refined anisotropically. All H atoms were located in difference density Fourier maps, but were then placed in calculated positions riding on their respective carrier atom with C—H distances of 0.95, N—H distances of 0.91 Å, and O—H distances of 0.84 Å. Ammonium and hydroxyl H atoms were allowed to rotate but not to tip to best fit the observed electron density distribution. The position of the hydrogen atom of the minor occupied hydroxyl group was refined with a damping factor (DAMP 2000 in SHELXTL (Sheldrick, 2008)). In the final refinement cycles after removal of the damping factor its position was set to ride on its carrier oxygen atom. Uiso(H) values were constrained to be 1.2 Ueq(C) of the parent atom for C bound H atoms, and 1.5 times Ueq(N/O) for N and O bound H atoms.

The compound was refined as a racemic twin. The twin ratio refined to 0.89 (4) to 0.11 (4).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms.
[Figure 2] Fig. 2. Projection along the c-axis of an inorganic layer in the structure of the title compound. Hydrogen bonds are denoted as red broken lines.
[Figure 3] Fig. 3. Projection of the structure along the b-axis. Hydrogen bonds are denoted as red broken lines, halogen bonds as black broken lines. For the disordered Cl atom, only the major part is shown.
2-Chlorobenzene-1,4-diaminium bis(dihydrogenphosphate) top
Crystal data top
C6H9ClN22+·2H2PO4F(000) = 696
Mr = 338.57Dx = 1.752 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7956 reflections
a = 7.0084 (8) Åθ = 2.6–31.8°
b = 7.9404 (9) ŵ = 0.58 mm1
c = 23.064 (3) ÅT = 100 K
V = 1283.5 (3) Å3Block, colourless
Z = 40.55 × 0.52 × 0.51 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4134 independent reflections
Radiation source: fine-focus sealed tube4060 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 32.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 610
Tmin = 0.689, Tmax = 0.746k = 1111
11671 measured reflectionsl = 3333
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0328P)2 + 0.2706P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.002
4134 reflectionsΔρmax = 0.44 e Å3
186 parametersΔρmin = 0.27 e Å3
0 restraintsAbsolute structure: Flack (1983), 1694 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (4)
Crystal data top
C6H9ClN22+·2H2PO4V = 1283.5 (3) Å3
Mr = 338.57Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.0084 (8) ŵ = 0.58 mm1
b = 7.9404 (9) ÅT = 100 K
c = 23.064 (3) Å0.55 × 0.52 × 0.51 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4134 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
4060 reflections with I > 2σ(I)
Tmin = 0.689, Tmax = 0.746Rint = 0.021
11671 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.064Δρmax = 0.44 e Å3
S = 1.11Δρmin = 0.27 e Å3
4134 reflectionsAbsolute structure: Flack (1983), 1694 Friedel pairs
186 parametersAbsolute structure parameter: 0.11 (4)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.3321 (2)0.15359 (17)0.76907 (6)0.0129 (2)
H11.44960.11550.78490.015*0.0329 (9)
C21.18845 (19)0.20920 (16)0.80593 (5)0.0109 (2)
C31.0154 (2)0.26208 (16)0.78290 (5)0.0131 (2)
H30.91610.29840.80800.016*
C40.9869 (2)0.26197 (17)0.72312 (5)0.0133 (2)
H40.86860.29770.70720.016*
C51.13375 (19)0.20895 (16)0.68709 (5)0.0108 (2)
C61.30604 (19)0.15298 (17)0.70924 (6)0.0129 (2)
H61.40440.11490.68410.015*0.9671 (9)
N11.21619 (16)0.20932 (15)0.86858 (4)0.01139 (19)
H1A1.21270.10160.88200.017*
H1B1.12180.27040.88570.017*
H1C1.33140.25600.87710.017*
N21.10964 (17)0.21095 (15)0.62440 (4)0.01136 (19)
H2A1.21400.25870.60760.017*
H2B1.00400.27190.61510.017*
H2C1.09590.10360.61120.017*
O11.22585 (15)0.22787 (14)0.49473 (4)0.01666 (19)
H1D1.11800.26660.48610.025*
O21.44777 (14)0.15775 (12)0.57261 (4)0.01261 (17)
O31.20902 (15)0.39458 (12)0.58809 (4)0.01507 (19)
H3A1.29900.45840.57830.023*
O41.09007 (14)0.10621 (12)0.58851 (4)0.01272 (18)
O51.66727 (16)0.25284 (15)0.50298 (4)0.0190 (2)
H51.77530.20930.49810.029*
O61.64342 (16)0.10590 (12)0.60055 (5)0.01469 (19)0.9671 (9)
H6A1.56180.04080.58610.022*0.9671 (9)
O6B1.690 (5)0.096 (4)0.5735 (15)0.01469 (19)0.0329 (9)
H6B1.59070.03610.57280.022*0.0329 (9)
O71.78483 (14)0.38754 (12)0.59744 (4)0.01286 (18)
O81.43146 (14)0.34988 (12)0.57179 (4)0.01380 (18)
P11.24379 (5)0.21374 (4)0.562311 (13)0.00959 (7)
P21.63262 (5)0.28287 (4)0.569303 (13)0.00987 (7)
Cl11.54768 (5)0.08734 (5)0.796787 (14)0.01984 (9)0.9671 (9)
Cl1B1.5045 (15)0.0693 (15)0.6861 (4)0.01984 (9)0.0329 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0096 (5)0.0148 (5)0.0141 (5)0.0021 (5)0.0011 (4)0.0012 (4)
C20.0123 (5)0.0106 (5)0.0100 (5)0.0001 (5)0.0002 (4)0.0011 (4)
C30.0119 (6)0.0155 (5)0.0119 (5)0.0031 (5)0.0008 (4)0.0000 (4)
C40.0108 (6)0.0171 (6)0.0120 (5)0.0040 (5)0.0002 (4)0.0008 (4)
C50.0133 (6)0.0101 (5)0.0091 (4)0.0008 (5)0.0002 (4)0.0000 (4)
C60.0105 (6)0.0150 (5)0.0132 (5)0.0010 (5)0.0010 (5)0.0011 (4)
N10.0123 (5)0.0118 (4)0.0100 (4)0.0000 (4)0.0011 (4)0.0004 (3)
N20.0123 (5)0.0127 (4)0.0091 (4)0.0006 (4)0.0006 (4)0.0009 (4)
O10.0131 (4)0.0260 (5)0.0109 (4)0.0043 (4)0.0005 (3)0.0040 (4)
O20.0092 (4)0.0137 (4)0.0150 (4)0.0019 (4)0.0006 (4)0.0000 (3)
O30.0132 (5)0.0101 (4)0.0220 (4)0.0001 (4)0.0028 (4)0.0011 (3)
O40.0125 (4)0.0111 (4)0.0145 (4)0.0010 (4)0.0030 (3)0.0013 (3)
O50.0158 (5)0.0301 (6)0.0111 (4)0.0048 (4)0.0007 (4)0.0045 (3)
O60.0168 (5)0.0097 (4)0.0176 (5)0.0014 (4)0.0033 (4)0.0011 (3)
O6B0.0168 (5)0.0097 (4)0.0176 (5)0.0014 (4)0.0033 (4)0.0011 (3)
O70.0129 (4)0.0110 (4)0.0146 (4)0.0013 (4)0.0023 (3)0.0019 (3)
O80.0105 (4)0.0142 (4)0.0167 (4)0.0011 (4)0.0007 (4)0.0000 (3)
P10.00924 (14)0.00981 (12)0.00974 (12)0.00071 (12)0.00054 (11)0.00102 (11)
P20.00882 (14)0.00994 (12)0.01085 (13)0.00014 (12)0.00035 (11)0.00110 (11)
Cl10.01175 (15)0.03455 (19)0.01321 (14)0.00876 (14)0.00169 (12)0.00062 (13)
Cl1B0.01175 (15)0.03455 (19)0.01321 (14)0.00876 (14)0.00169 (12)0.00062 (13)
Geometric parameters (Å, º) top
C1—C21.3898 (18)N2—H2B0.9100
C1—C61.3921 (17)N2—H2C0.9100
C1—Cl11.7228 (14)O1—P11.5678 (10)
C1—H10.9500O1—H1D0.8400
C2—C31.3889 (18)O2—P11.5159 (10)
C2—N11.4578 (14)O3—P11.5731 (10)
C3—C41.3933 (17)O3—H3A0.8400
C3—H30.9500O4—P11.5016 (10)
C4—C51.3879 (18)O5—P21.5670 (10)
C4—H40.9500O5—H50.8400
C5—C61.3843 (18)O6—P21.5811 (11)
C5—N21.4558 (14)O6—H6A0.8400
C6—Cl1B1.631 (10)O6—H6B0.9243
C6—H60.9500O6B—P21.54 (3)
N1—H1A0.9100O6B—H6B0.8400
N1—H1B0.9100O7—P21.5000 (10)
N1—H1C0.9100O8—P21.5080 (10)
N2—H2A0.9100
C2—C1—C6120.83 (12)C5—N2—H2A109.5
C2—C1—Cl1120.36 (10)C5—N2—H2B109.5
C6—C1—Cl1118.81 (10)H2A—N2—H2B109.5
C2—C1—H1119.6C5—N2—H2C109.5
C6—C1—H1119.6H2A—N2—H2C109.5
C3—C2—C1119.64 (11)H2B—N2—H2C109.5
C3—C2—N1119.69 (11)P1—O1—H1D109.5
C1—C2—N1120.65 (11)P1—O3—H3A109.5
C2—C3—C4120.22 (12)P2—O5—H5109.5
C2—C3—H3119.9P2—O6—H6A109.5
C4—C3—H3119.9P2—O6—H6B101.4
C5—C4—C3119.11 (12)P2—O6B—H6B109.2
C5—C4—H4120.4O4—P1—O2116.53 (6)
C3—C4—H4120.4O4—P1—O1112.54 (6)
C6—C5—C4121.54 (11)O2—P1—O1104.62 (6)
C6—C5—N2118.11 (11)O4—P1—O3104.82 (5)
C4—C5—N2120.34 (11)O2—P1—O3110.77 (6)
C5—C6—C1118.63 (12)O1—P1—O3107.34 (6)
C5—C6—Cl1B138.9 (4)O7—P2—O8116.93 (6)
C1—C6—Cl1B102.3 (4)O7—P2—O6B108.8 (12)
C5—C6—H6120.7O8—P2—O6B125.5 (13)
C1—C6—H6120.7O7—P2—O5113.36 (6)
C2—N1—H1A109.5O8—P2—O5103.63 (6)
C2—N1—H1B109.5O6B—P2—O582.8 (13)
H1A—N1—H1B109.5O7—P2—O6105.14 (6)
C2—N1—H1C109.5O8—P2—O6109.93 (6)
H1A—N1—H1C109.5O5—P2—O6107.60 (6)
H1B—N1—H1C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O7i0.911.762.6726 (15)175
N1—H1B···O4ii0.911.882.7807 (15)172
N1—H1C···O2iii0.912.052.9155 (15)158
N2—H2A···O80.911.882.7886 (15)178
N2—H2B···O7iv0.911.842.7450 (15)178
N2—H2C···O40.911.752.6545 (15)175
O1—H1D···O2v0.841.902.6525 (14)148
O3—H3A···O8vi0.841.792.5863 (14)158
O5—H5···O8vii0.842.002.6585 (14)134
O6—H6A···O20.841.792.5841 (14)156
O6B—H6B···O20.841.842.63 (3)157
Symmetry codes: (i) x+3, y1/2, z+3/2; (ii) x+2, y+1/2, z+3/2; (iii) x+3, y+1/2, z+3/2; (iv) x1, y, z; (v) x1/2, y1/2, z+1; (vi) x, y1, z; (vii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC6H9ClN22+·2H2PO4
Mr338.57
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.0084 (8), 7.9404 (9), 23.064 (3)
V3)1283.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.55 × 0.52 × 0.51
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2011)
Tmin, Tmax0.689, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
11671, 4134, 4060
Rint0.021
(sin θ/λ)max1)0.745
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.064, 1.11
No. of reflections4134
No. of parameters186
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.27
Absolute structureFlack (1983), 1694 Friedel pairs
Absolute structure parameter0.11 (4)

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O7i0.911.762.6726 (15)175.2
N1—H1B···O4ii0.911.882.7807 (15)172.3
N1—H1C···O2iii0.912.052.9155 (15)158.1
N2—H2A···O80.911.882.7886 (15)178.0
N2—H2B···O7iv0.911.842.7450 (15)177.7
N2—H2C···O40.911.752.6545 (15)174.8
O1—H1D···O2v0.841.902.6525 (14)148.0
O3—H3A···O8vi0.841.792.5863 (14)157.8
O5—H5···O8vii0.842.002.6585 (14)134.2
O6—H6A···O20.841.792.5841 (14)155.9
O6B—H6B···O20.841.842.63 (3)157.4
Symmetry codes: (i) x+3, y1/2, z+3/2; (ii) x+2, y+1/2, z+3/2; (iii) x+3, y+1/2, z+3/2; (iv) x1, y, z; (v) x1/2, y1/2, z+1; (vi) x, y1, z; (vii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia. The diffractometer was funded by NSF grant No. 0087210, by Ohio Board of Regents grant CAP-491 and by YSU.

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChtioui, A. & Jouini, A. (2006). Mater. Res. Bull. 41, 569–575.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaabi, K., Ben Nasr, C. & Lefebvre, F. (2004). Mater. Res. Bull. 39, 205–215.  Web of Science CSD CrossRef CAS Google Scholar
First citationMasse, R., Bagieu-Beucher, M., Pecaut, J., Levy, J. P. & Zyss, J. (1993). Nonlinear Opt. 5, 413–423.  CAS Google Scholar
First citationMetrangolo, P. & Resnati, G. (2001). Chem. Eur. J. 7, 2511–2519.  CrossRef PubMed CAS Google Scholar
First citationMetrangolo, P. & Resnati, G. (2008). Science (Washington, DC), 321, 918–919.  Google Scholar
First citationOueslati, A., Ben Nasr, C., Durif, A. & Lefebvre, F. (2005). Mater. Res. Bull. 39, 970–980.  Web of Science CrossRef Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRayes, A., Ben Nasr, C. & Rzaigui, M. (2004). Mater. Res. Bull. 39, 1113–1121.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o159-o160
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds