organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o285-o286

Benzyl 2-(benzylsulfanyl)benzoate

aFaculty of Metallurgy and Technology, University of Montenegro, Cetinjski put bb, 81000 Podgorica, Montenegro, bVinča Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia, cFaculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia, and dDepartment of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia
*Correspondence e-mail: zorica@ac.me

(Received 9 January 2013; accepted 17 January 2013; online 23 January 2013)

In the title compound, C21H18O2S, the central aromatic ring makes dihedral angles of 5.86 (12) and 72.02 (6)° with the rings of the terminal O-benzyl and S-benzyl groups, respectively. The dihedral angle between the peripheral phenyl rings is 66.16 (6)°. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers. These dimers are linked via C—H⋯π inter­actions, forming a three-dimensional network.

Related literature

For related structures, see: Radić et al. (2012[Radić, G. P., Glodjović, V. V., Radojević, I. D., Stefanović, O. D., Čomić, Lj. R., Ratković, Z. R., Valkonen, A., Rissanen, K. & Trifunović, S. R. (2012). Polyhedron, 31, 69-76.]); Lucena et al. (1996[Lucena, N., Casabó, J., Escriche, L., Sánchez-Castelló, G., Teixidor, F., Kivekäs, R. & Sillanpää, R. (1996). Polyhedron, 15, 3009-3018.]); Sillanpää et al. (1994[Sillanpää, R., Kivekäs, R., Escriche, L., Lucena, N., Teixidor, F. & Casabó, J. (1994). Acta Cryst. C50, 2049-2051.]); Alhadi et al. (2010[Alhadi, A. A., Khaledi, H., Mohd Ali, H. & Olmstead, M. M. (2010). Acta Cryst. E66, o1787.]). For the biological activity of thio­salicylic acid derivatives, see: Bernardelli et al. (2005[Bernardelli, P., Cronin, A. M., Denis, A., Denton, S. M., Jacobelli, H., Kemp, M. I., Lorthiois, E., Rousseau, F., Serradeil-Civit, D. & Vergne, F. (2005). US Patent 20050267095.]); Halaschek-Wiener et al. (2003[Halaschek-Wiener, J., Kloog, Y., Wacheck, V. & Jansen, B. (2003). J. Invest. Dermatol. 120, 109-115.]); Sadao et al. (2000[Sadao, I., Fujio, S., Hidekazu, M. & Keita, K. (2000). Jpn Patent 2000-178188.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18O2S

  • Mr = 334.41

  • Triclinic, [P \overline 1]

  • a = 5.6957 (3) Å

  • b = 12.1117 (11) Å

  • c = 13.0813 (11) Å

  • α = 72.748 (8)°

  • β = 86.477 (6)°

  • γ = 89.941 (6)°

  • V = 860.04 (12) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.74 mm−1

  • T = 293 K

  • 0.11 × 0.10 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur Gemini Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2012[Oxford Diffraction (2012). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.944, Tmax = 1.000

  • 5368 measured reflections

  • 3299 independent reflections

  • 2554 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.113

  • S = 1.04

  • 3299 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Geometry of hydrogen bonds and weak C—H⋯π interactions (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C2–C7, C9–C14 and C16–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O2i 0.93 2.63 3.408 (3) 142
C4—H4⋯Cg3ii 0.93 3.11 3.846 (3) 137
C13—H13⋯Cg3i 0.93 2.88 3.653 (3) 141
C18—H18⋯Cg1iii 0.93 3.20 3.820 (3) 126
C20—H20⋯Cg2iv 0.93 2.96 3.651 (3) 132
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+2, -y, -z+1; (iii) -x+1, -y, -z+1; (iv) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2012[Oxford Diffraction (2012). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.] and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Thiosalicylic acid and its derivatives find potential application in numerous disease treatments, in particular inflammatory, allergic and respiratory diseases (Bernardelli et al., 2005) as well as Ras tumor growth inhibitors (Halaschek-Wiener et al., 2003). Ketones derived from thiosalicylic acids have application as bile acid transport inhibitors (Sadao et al., 2000). In continuation of our work on structural and biological properties of thiosalicylic derivatives and their metal complexes (Radić et al., 2012) here we present the crystal structure of the novel ligand benzyl 2-(benzylsulfanyl)benzoate.

The bond lengths and angles in the title compound are within the expected ranges. The dihedral angle between aromatic rings of the central thiosalicylic and terminal O-benzyl group is 5.86 (12)° indicating a nearly co-planar orientation of these two fragments. On the other hand, the ring of the S-benzyl group is significantly twisted with respect to the central ring forming a dihedral angle of 72.02 (6)°. In the previously reported crystal structures with S-benzyl derivatives of thiosalicylic acid the analogue dihedral angle varies from 13.4 to 88.9°, suggesting the free rotation of the S-benzyl ring around the single bonds of the C3–S1–C15–C16 fragment. The specific property of the present compound is that the atoms S1, C15 are C16 all lie in the plane of the central ring within 0.03 Å. In the cases of similar uncoordinated (Sillanpää et al., 1994; Alhadi et al., 2010] as well as coordinated ligands (Radić et al., 2012; Lucena et al., 1996) the corresponding atom C16 is significantly out of the central ring plane (1.57 Å in average).

The pair of C14—H14···O2 interactions connects inversion related molecules into dimers (Table 1, Fig. 2). This connection is reinforced by means of C—H···π interactions involving the O-benzyl C13—H13 donor and the S-benzyl ring from an inversion-related molecule as acceptor (Table 1; Cg3 is the centroid of the S-benzyl ring). The S-benzyl ring also serves as a π-acceptor for C—H donors of a neighboring molecular pair; in that way the pairs of molecules further arrange into chain by C4— H4···Cg3 interactions (Table 1, Fig. 2). The molecules are further associated into a three-dimensional structure by C—H···π interactions which engage two remaining phenyl rings as π-acceptors (Table 1, Cg1 and Cg2 are centroids of central thiosalicylic and terminal O-benzyl rings, respectively).

Related literature top

For related structures, see: Radić et al. (2012); Lucena et al. (1996); Sillanpää et al. (1994); Alhadi et al. (2010). For the biological activity of thiosalicylic acid derivatives, see: Bernardelli et al. (2005); Halaschek-Wiener et al. (2003); Sadao et al. (2000).

Experimental top

The thioacid ligand was prepared by alkylation of thiosalicylic acid by means of the corresponding alkyl halogenides in alkaline water-ethanol solution. Thiosalicylic acid (1 mmol) was added to a 100 cm3 round bottom flask containing 50 cm3 of a 30% solution of ethanol in water and stirred. A solution of NaOH (2 mmol in 5 cm3 of water) was added to the acid suspension, whereupon the solution became clear. The corresponding benzyl halogenide (2 mmol) was dissolved in 5 cm3 of ethanol and transferred to the stirred solution. The resulting mixture was kept overnight at 60°C. The reaction mixture was transffered into a beaker and ethanol was evaporated off on a water bath. Diluted hydrochloric acid (2 mol/dm3) was added to the resulting water solution and S-benzyl thiosalicylic acid was precipitated as a white powder. The obtained acid was filtered off and washed with plenty of distilled water. The product was dried under vacuum overnight. Crystals of the title compound suitable for X-ray determination were obtained by slow evaporation of a benzyl alcohol solution, which unexpectedly resulted in the esterification of the carboxylic group of thiosalicylic acid.

Refinement top

H atoms bonded to C atoms were placed at geometrically calculated positions and refined using a riding model. C—H distances were fixed to 0.93 and 0.97 Å from aromatic and methylene C atoms, respectively. The Uiso(H) values were equal to 1.2 times Ueq of the corresponding aromatic C(sp2) and methylene C(sp3) atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2012); cell refinement: CrysAlis PRO (Oxford Diffraction, 2012); data reduction: CrysAlis PRO (Oxford Diffraction, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 40% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Partial crystal packing of the title compound. The C14—H···O2 and C13—H···π connected pairs of molecules are linked into a chain by C4—H4···π interactions.
Benzyl 2-(benzylsulfanyl)benzoate top
Crystal data top
C21H18O2SZ = 2
Mr = 334.41F(000) = 352
Triclinic, P1Dx = 1.291 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 5.6957 (3) ÅCell parameters from 2123 reflections
b = 12.1117 (11) Åθ = 3.5–72.3°
c = 13.0813 (11) ŵ = 1.74 mm1
α = 72.748 (8)°T = 293 K
β = 86.477 (6)°Prism, colourless
γ = 89.941 (6)°0.11 × 0.10 × 0.05 mm
V = 860.04 (12) Å3
Data collection top
Oxford Diffraction Xcalibur Gemini Sapphire3
diffractometer
3299 independent reflections
Radiation source: Enhance (Cu) X-ray Source2554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 16.3280 pixels mm-1θmax = 72.4°, θmin = 3.6°
ω scansh = 57
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2012)
k = 1414
Tmin = 0.944, Tmax = 1.000l = 1615
5368 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.0651P]
where P = (Fo2 + 2Fc2)/3
3299 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C21H18O2Sγ = 89.941 (6)°
Mr = 334.41V = 860.04 (12) Å3
Triclinic, P1Z = 2
a = 5.6957 (3) ÅCu Kα radiation
b = 12.1117 (11) ŵ = 1.74 mm1
c = 13.0813 (11) ÅT = 293 K
α = 72.748 (8)°0.11 × 0.10 × 0.05 mm
β = 86.477 (6)°
Data collection top
Oxford Diffraction Xcalibur Gemini Sapphire3
diffractometer
3299 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2012)
2554 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 1.000Rint = 0.018
5368 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.04Δρmax = 0.21 e Å3
3299 reflectionsΔρmin = 0.21 e Å3
217 parameters
Special details top

Experimental. IR (KBr, cm-1): 3414, 3061, 2920, 2648, 2559, 1674, 1584, 1562, 1463, 1412, 1317, 1272, 1255, 1154, 1062, 1046, 897, 743, 711, 652, 551. 1H NMR (200 MHz, CDCl3, δ p.p.m.): 4.11 (s, 2H, C15H2), 5.45 (s, 2H, C8H2), 7.00–7.93 (m, 17H, Ar and bz). 13C NMR (50 MHz, DMSO-d6, δ p.p.m.): 38.5 (C15H2), 68.3 (C8H2) 125.0; 126.3; 126.8; 127.0; 127.2; 127.5; 127.8; 127.9; 128.1; 128.3; 128.8; 128.9, 129.3; 130.2; 133.5; 139.5; 141.7; 142.3 (Ar and bz), 166.8 (COObz).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.60616 (9)0.22258 (5)0.48163 (4)0.06178 (18)
O10.1278 (2)0.47589 (12)0.28903 (10)0.0595 (4)
O20.2518 (3)0.37675 (15)0.44697 (11)0.0859 (6)
C10.2696 (3)0.40163 (17)0.35128 (15)0.0549 (5)
C20.4509 (3)0.35644 (16)0.28855 (14)0.0519 (4)
C30.6149 (3)0.27491 (16)0.34054 (14)0.0519 (4)
C40.7850 (4)0.23806 (19)0.27595 (16)0.0632 (5)
H40.89450.18380.30810.076*
C50.7919 (4)0.2808 (2)0.16621 (17)0.0728 (6)
H50.90720.25550.12530.087*
C60.6324 (4)0.3601 (2)0.11575 (17)0.0743 (6)
H60.63880.38850.04130.089*
C70.4622 (4)0.39694 (19)0.17718 (15)0.0650 (5)
H70.35250.45010.14330.078*
C80.0440 (4)0.53023 (19)0.34328 (15)0.0602 (5)
H8A0.03480.57510.38170.072*
H8B0.14260.47180.39460.072*
C90.1923 (3)0.60777 (16)0.26112 (15)0.0522 (4)
C100.1380 (4)0.6363 (2)0.15204 (16)0.0659 (6)
H100.00310.60730.12640.079*
C110.2821 (4)0.7076 (2)0.08082 (17)0.0725 (6)
H110.24370.72600.00750.087*
C120.4810 (4)0.7514 (2)0.11702 (18)0.0712 (6)
H120.57800.79900.06860.085*
C130.5362 (4)0.7247 (2)0.22537 (18)0.0678 (6)
H130.66980.75520.25050.081*
C140.3935 (3)0.65252 (18)0.29709 (16)0.0592 (5)
H140.43320.63390.37030.071*
C150.8417 (4)0.11867 (19)0.50644 (16)0.0637 (5)
H15A0.81060.05710.47540.076*
H15B0.99040.15610.47460.076*
C160.8515 (3)0.07081 (16)0.62584 (15)0.0555 (5)
C170.6840 (4)0.0071 (2)0.68695 (18)0.0715 (6)
H170.56320.03150.65360.086*
C180.6927 (4)0.0493 (2)0.79649 (19)0.0817 (7)
H180.57870.10220.83640.098*
C190.8689 (4)0.0138 (2)0.84739 (19)0.0757 (6)
H190.87430.04180.92150.091*
C201.0364 (4)0.0634 (2)0.78757 (19)0.0746 (6)
H201.15710.08720.82140.090*
C211.0283 (4)0.10629 (19)0.67754 (17)0.0641 (5)
H211.14230.15940.63800.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0688 (3)0.0641 (3)0.0475 (3)0.0269 (2)0.0004 (2)0.0098 (2)
O10.0647 (8)0.0623 (8)0.0502 (7)0.0208 (7)0.0064 (6)0.0145 (6)
O20.0995 (12)0.1023 (13)0.0475 (8)0.0567 (10)0.0012 (7)0.0103 (8)
C10.0607 (11)0.0530 (11)0.0481 (10)0.0107 (9)0.0047 (8)0.0106 (8)
C20.0601 (11)0.0465 (10)0.0469 (10)0.0058 (8)0.0000 (8)0.0111 (8)
C30.0570 (11)0.0489 (10)0.0483 (10)0.0060 (8)0.0028 (8)0.0136 (8)
C40.0660 (12)0.0638 (13)0.0567 (11)0.0154 (10)0.0050 (9)0.0152 (9)
C50.0790 (15)0.0769 (15)0.0615 (13)0.0124 (12)0.0148 (10)0.0229 (11)
C60.0987 (17)0.0748 (15)0.0450 (11)0.0102 (13)0.0089 (11)0.0139 (10)
C70.0794 (14)0.0618 (13)0.0501 (11)0.0136 (11)0.0039 (10)0.0109 (9)
C80.0645 (12)0.0638 (12)0.0502 (11)0.0173 (10)0.0028 (9)0.0138 (9)
C90.0542 (10)0.0489 (10)0.0523 (10)0.0059 (8)0.0050 (8)0.0129 (8)
C100.0618 (12)0.0783 (15)0.0537 (11)0.0165 (11)0.0007 (9)0.0142 (10)
C110.0755 (14)0.0837 (16)0.0506 (11)0.0134 (12)0.0052 (10)0.0077 (10)
C120.0655 (13)0.0764 (15)0.0673 (14)0.0172 (11)0.0186 (10)0.0120 (11)
C130.0591 (12)0.0716 (14)0.0738 (14)0.0181 (10)0.0061 (10)0.0228 (11)
C140.0609 (12)0.0636 (12)0.0546 (11)0.0099 (10)0.0031 (9)0.0202 (9)
C150.0637 (12)0.0635 (12)0.0621 (12)0.0257 (10)0.0048 (9)0.0160 (10)
C160.0553 (11)0.0490 (10)0.0615 (12)0.0180 (9)0.0052 (9)0.0150 (9)
C170.0682 (13)0.0626 (13)0.0766 (15)0.0004 (11)0.0176 (11)0.0073 (11)
C180.0813 (16)0.0699 (15)0.0762 (16)0.0043 (12)0.0062 (12)0.0059 (12)
C190.0878 (17)0.0730 (15)0.0603 (13)0.0167 (13)0.0134 (12)0.0091 (11)
C200.0734 (15)0.0783 (16)0.0769 (15)0.0095 (12)0.0201 (12)0.0272 (13)
C210.0563 (12)0.0637 (13)0.0717 (14)0.0039 (10)0.0022 (10)0.0197 (10)
Geometric parameters (Å, º) top
S1—C31.7623 (19)C10—H100.9300
S1—C151.8159 (18)C11—C121.368 (3)
O1—C11.331 (2)C11—H110.9300
O1—C81.444 (2)C12—C131.373 (3)
O2—C11.195 (2)C12—H120.9300
C1—C21.483 (3)C13—C141.382 (3)
C2—C71.390 (2)C13—H130.9300
C2—C31.410 (3)C14—H140.9300
C3—C41.405 (2)C15—C161.501 (3)
C4—C51.372 (3)C15—H15A0.9700
C4—H40.9300C15—H15B0.9700
C5—C61.371 (3)C16—C171.379 (3)
C5—H50.9300C16—C211.383 (3)
C6—C71.379 (3)C17—C181.375 (3)
C6—H60.9300C17—H170.9300
C7—H70.9300C18—C191.375 (3)
C8—C91.504 (2)C18—H180.9300
C8—H8A0.9700C19—C201.368 (3)
C8—H8B0.9700C19—H190.9300
C9—C101.380 (3)C20—C211.381 (3)
C9—C141.383 (3)C20—H200.9300
C10—C111.379 (3)C21—H210.9300
C3—S1—C15103.19 (9)C12—C11—H11119.7
C1—O1—C8116.17 (14)C10—C11—H11119.7
O2—C1—O1122.68 (18)C11—C12—C13119.5 (2)
O2—C1—C2124.83 (17)C11—C12—H12120.2
O1—C1—C2112.48 (16)C13—C12—H12120.2
C7—C2—C3119.66 (17)C12—C13—C14120.1 (2)
C7—C2—C1119.51 (17)C12—C13—H13120.0
C3—C2—C1120.82 (16)C14—C13—H13120.0
C4—C3—C2117.65 (17)C13—C14—C9120.71 (19)
C4—C3—S1121.64 (15)C13—C14—H14119.6
C2—C3—S1120.71 (14)C9—C14—H14119.6
C5—C4—C3121.03 (19)C16—C15—S1107.11 (13)
C5—C4—H4119.5C16—C15—H15A110.3
C3—C4—H4119.5S1—C15—H15A110.3
C6—C5—C4121.3 (2)C16—C15—H15B110.3
C6—C5—H5119.4S1—C15—H15B110.3
C4—C5—H5119.4H15A—C15—H15B108.5
C5—C6—C7118.9 (2)C17—C16—C21118.3 (2)
C5—C6—H6120.5C17—C16—C15121.5 (2)
C7—C6—H6120.5C21—C16—C15120.2 (2)
C6—C7—C2121.5 (2)C18—C17—C16121.0 (2)
C6—C7—H7119.3C18—C17—H17119.5
C2—C7—H7119.3C16—C17—H17119.5
O1—C8—C9108.69 (15)C19—C18—C17120.4 (2)
O1—C8—H8A110.0C19—C18—H18119.8
C9—C8—H8A110.0C17—C18—H18119.8
O1—C8—H8B110.0C20—C19—C18119.1 (2)
C9—C8—H8B110.0C20—C19—H19120.4
H8A—C8—H8B108.3C18—C19—H19120.4
C10—C9—C14118.49 (17)C19—C20—C21120.8 (2)
C10—C9—C8123.42 (17)C19—C20—H20119.6
C14—C9—C8118.09 (17)C21—C20—H20119.6
C11—C10—C9120.55 (19)C20—C21—C16120.4 (2)
C11—C10—H10119.7C20—C21—H21119.8
C9—C10—H10119.7C16—C21—H21119.8
C12—C11—C10120.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C2–C7, C9–C14 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.932.633.408 (3)142
C4—H4···Cg3ii0.933.113.846 (3)137
C13—H13···Cg3i0.932.883.653 (3)141
C18—H18···Cg1iii0.933.203.820 (3)126
C20—H20···Cg2iv0.932.963.651 (3)132
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y, z+1; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H18O2S
Mr334.41
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.6957 (3), 12.1117 (11), 13.0813 (11)
α, β, γ (°)72.748 (8), 86.477 (6), 89.941 (6)
V3)860.04 (12)
Z2
Radiation typeCu Kα
µ (mm1)1.74
Crystal size (mm)0.11 × 0.10 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur Gemini Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2012)
Tmin, Tmax0.944, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5368, 3299, 2554
Rint0.018
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.113, 1.04
No. of reflections3299
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C2–C7, C9–C14 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.932.633.408 (3)142
C4—H4···Cg3ii0.933.113.846 (3)137
C13—H13···Cg3i0.932.883.653 (3)141
C18—H18···Cg1iii0.933.203.820 (3)126
C20—H20···Cg2iv0.932.963.651 (3)132
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y, z+1; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Ministry of Education and Science of the Republic of Serbia (Project Nos. 172016, 172034, 172014 and 172035). We thank Professor V. Divjakovic, University of Novi Sad, for help with the X-ray data collection.

References

First citationAlhadi, A. A., Khaledi, H., Mohd Ali, H. & Olmstead, M. M. (2010). Acta Cryst. E66, o1787.  Web of Science CSD CrossRef IUCr Journals
First citationBernardelli, P., Cronin, A. M., Denis, A., Denton, S. M., Jacobelli, H., Kemp, M. I., Lorthiois, E., Rousseau, F., Serradeil-Civit, D. & Vergne, F. (2005). US Patent 20050267095.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationHalaschek-Wiener, J., Kloog, Y., Wacheck, V. & Jansen, B. (2003). J. Invest. Dermatol. 120, 109–115.  Web of Science PubMed CAS
First citationLucena, N., Casabó, J., Escriche, L., Sánchez-Castelló, G., Teixidor, F., Kivekäs, R. & Sillanpää, R. (1996). Polyhedron, 15, 3009–3018.  CSD CrossRef CAS Web of Science
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals
First citationOxford Diffraction (2012). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
First citationRadić, G. P., Glodjović, V. V., Radojević, I. D., Stefanović, O. D., Čomić, Lj. R., Ratković, Z. R., Valkonen, A., Rissanen, K. & Trifunović, S. R. (2012). Polyhedron, 31, 69–76.
First citationSadao, I., Fujio, S., Hidekazu, M. & Keita, K. (2000). Jpn Patent 2000-178188.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSillanpää, R., Kivekäs, R., Escriche, L., Lucena, N., Teixidor, F. & Casabó, J. (1994). Acta Cryst. C50, 2049–2051.  CSD CrossRef Web of Science IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o285-o286
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds