organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-6-(piperidin-1-yl)pyrimidin-2-amine

aDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, bCentre of Advanced Study in Crystallography and Biophysics, University of Madras Guindy Campus, Chennai 600 025, India, cDepartment of Studies and Research in Chemistry, U.C.S, Tumkur University, Tumkur, Karnataka 572 103, India, and dDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India
*Correspondence e-mail: drsreenivasa@yahoo.co.in

(Received 14 December 2012; accepted 16 December 2012; online 9 January 2013)

The title compound, C10H16N4, crystalizes with two mol­ecules (A and B) in the asymmetric unit in which the dihedral angles between the piperidine and pyrimidine rings are 47.5 (1) and 10.3 (1)°. The four C atoms of the pyrimidine ring in one of the mol­ecules are disordered over two sets of sites with occupancy factors 0.508 (11):0.492 (11). In the crystal, the A mol­ecules are linked to one another through N—H⋯N hydrogen bonds, generating R22(8) ring patterns and forming inversion dimers. These dimers are further connected on either side to a B molecule through pairs of N—H⋯N hydrogen bonds, resulting in a tetra­meric unit.

Related literature

For background to pyrimidine derivatives and their biological activity, see: Patel et al. (2003[Patel, R., Desai, K. & Chikhalia, K. (2003). J. Indian Chem. Soc. 80, 138-145.]) and for a related structure see: Sreenivasa et al. (2012[Sreenivasa, S., ManojKumar, K. E., Suchetan, P. A., Srinivasan, T., Palakshamurthy, B. S. & Velmurgan, D. (2012). Acta Cryst. E68, o3371.]). For hydrogen bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H16N4

  • Mr = 192.27

  • Monoclinic, P 21 /n

  • a = 13.9605 (4) Å

  • b = 8.7564 (3) Å

  • c = 17.7055 (6) Å

  • β = 104.381 (2)°

  • V = 2096.57 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.985

  • 15644 measured reflections

  • 3708 independent reflections

  • 2657 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.171

  • S = 1.10

  • 3708 reflections

  • 308 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—HN3B⋯N1i 0.86 (2) 2.19 (2) 3.043 (2) 173.3 (19)
N3—HN3A⋯N5 0.90 (2) 2.34 (2) 3.210 (2) 162.1 (17)
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Compounds with a nitrogen-containing heterocyclic ring, such as pyrimidine, are promising candidates for drug design. Pyrimidine derivatives form a component in a number of useful drugs and are associated with many biological and therapeutic activities (Patel et al., 2003). With this in mind, we synthesized the title compound to study its crystal structure.

The title compound crystallizes with two molecules in the asymmetric unit with the piperidine rings in each molecule adopting chair conformations. The dihedral angles between the piperidine ring and pyrimidine rings in the two molecules are 47.5 (1)o and 10.3 (1)o respectively, compared to 14.00 (1)° observed in 1-(2-amino-6-methylpyrimidin-4-yl)-N,N-dimethylpiperidin-4-aminium chloride (Sreenivasa et al., 2012).

In the crystal structure, the molecules are linked to one another through N—H···N hydrogen bonds generating R22(8) ring patterns (Bernstein et al., 1995) forming inversion related dimers. These dimers are further connected to one another through a second N—H···N hydrogen bonds resulting in a tetrameric unit.

Related literature top

For background to pyrimidine derivatives and their biological activity, see: Patel et al. (2003) and for a related structure see: Sreenivasa et al. (2012). For hydrogen bond motifs, see: Bernstein et al. (1995).

Experimental top

2-Amino-4-chloro-6-methylpyrimidine(1.39 mmol) was dissolved in acetonirile (3 ml). To this solution, piperidine (1.66 mmol) Xantphos (4,5-bis-diphenylphosphino-9,9-dimethylxanthene), Pd(OAc)2 and Cs2CO3 (0.0695, 0.139 and 2.78 mmole respectively) were added. The reaction mixture was irradiated in a microwave at 60° C for 1.5 hrs. The reaction was monitored by TLC. Acetonitrile was removed under vacuum and the crude product was purified by column chromatography using CH2Cl2/methanol as eluents. The single-crystal required for the X-ray diffraction was grown by the slow evaporation technique from CH2Cl2 and MeOH (1:4).

Refinement top

The H atoms bound to carbon were positioned with idealized geometry using a riding model with d(C–H) = 0.93- 0.97 Å. All C–H atoms were refined with isotropic displacement parameters set to 1.2–1.5 Ueq(C). N—H atoms were located in a difference Fourier map and refined freely. The C16, C17, C19 and C20 carbon atoms of a pyrimidine ring in one of the molecules were disordered over two sites and refined with site occupancy factors 0.508 (11):0.492 (11).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound with hydrogen bonds drawn as dashed lines.
4-Methyl-6-(piperidin-1-yl)pyrimidin-2-amine top
Crystal data top
C10H16N4Prism
Mr = 192.27Dx = 1.218 Mg m3
Monoclinic, P21/nMelting point: 455 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 13.9605 (4) ÅCell parameters from 308 reflections
b = 8.7564 (3) Åθ = 1.7–25.0°
c = 17.7055 (6) ŵ = 0.08 mm1
β = 104.381 (2)°T = 293 K
V = 2096.57 (12) Å3Prism, colourless
Z = 80.24 × 0.22 × 0.20 mm
F(000) = 832
Data collection top
Bruker APEXII
diffractometer
3708 independent reflections
Radiation source: fine-focus sealed tube2657 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 1.20 pixels mm-1θmax = 25.0°, θmin = 1.7°
ϕ and ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1010
Tmin = 0.972, Tmax = 0.985l = 1121
15644 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0937P)2 + 0.2814P]
where P = (Fo2 + 2Fc2)/3
3708 reflections(Δ/σ)max = 0.006
308 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.20 e Å3
0 constraints
Crystal data top
C10H16N4V = 2096.57 (12) Å3
Mr = 192.27Z = 8
Monoclinic, P21/nMo Kα radiation
a = 13.9605 (4) ŵ = 0.08 mm1
b = 8.7564 (3) ÅT = 293 K
c = 17.7055 (6) Å0.24 × 0.22 × 0.20 mm
β = 104.381 (2)°
Data collection top
Bruker APEXII
diffractometer
3708 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2657 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.985Rint = 0.027
15644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.30 e Å3
3708 reflectionsΔρmin = 0.20 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C20A0.0217 (5)1.3253 (10)0.2458 (5)0.0712 (18)0.508 (11)
H20A0.04201.34940.28040.085*0.508 (11)
H20B0.04211.41130.21100.085*0.508 (11)
C16A0.1147 (5)1.1602 (10)0.1412 (5)0.0704 (17)0.508 (11)
H16A0.13351.25010.10890.085*0.508 (11)
H16B0.11161.07400.10750.085*0.508 (11)
C19A0.0960 (6)1.2997 (13)0.2928 (5)0.083 (2)0.508 (11)
H19A0.10031.38920.32410.100*0.508 (11)
H19B0.07671.21310.32740.100*0.508 (11)
C17A0.1892 (5)1.1300 (10)0.1878 (5)0.0796 (19)0.508 (11)
H17A0.16951.04180.22120.096*0.508 (11)
H17B0.25351.10950.15320.096*0.508 (11)
C20B0.0077 (4)1.2596 (9)0.2749 (4)0.0596 (15)0.492 (11)
H20C0.05311.31730.29170.072*0.492 (11)
H20D0.00961.18320.31420.072*0.492 (11)
C16B0.1007 (5)1.0966 (10)0.1681 (5)0.0660 (17)0.492 (11)
H16C0.10551.01460.20380.079*0.492 (11)
H16D0.09801.05180.11850.079*0.492 (11)
C19B0.0955 (6)1.3643 (11)0.2640 (6)0.082 (2)0.492 (11)
H19C0.09241.44130.22530.098*0.492 (11)
H19D0.09451.41570.31270.098*0.492 (11)
C17B0.1888 (5)1.1995 (12)0.1571 (5)0.083 (2)0.492 (11)
H17C0.24861.14180.13520.099*0.492 (11)
H17D0.18401.28060.12100.099*0.492 (11)
N20.34290 (11)0.69695 (17)0.02892 (9)0.0568 (4)
N10.45148 (11)0.81391 (17)0.04021 (9)0.0567 (4)
N60.06632 (13)1.04169 (19)0.12363 (10)0.0651 (5)
C10.39782 (13)0.8129 (2)0.01325 (10)0.0521 (4)
N50.24230 (13)1.01232 (19)0.15556 (9)0.0625 (4)
N80.01255 (12)1.1855 (2)0.19909 (10)0.0691 (5)
N30.39837 (14)0.9424 (2)0.05401 (11)0.0667 (5)
C130.16605 (15)1.1656 (2)0.23497 (11)0.0633 (5)
H130.17191.22820.27830.076*
C120.07320 (15)1.1318 (2)0.18608 (11)0.0592 (5)
C30.39578 (15)0.5598 (2)0.06970 (13)0.0666 (5)
H30.39490.47150.09910.080*
C20.34414 (14)0.5670 (2)0.01117 (12)0.0595 (5)
C140.24743 (15)1.1046 (2)0.21758 (11)0.0617 (5)
C40.44712 (14)0.6853 (2)0.08232 (11)0.0602 (5)
C110.15060 (16)0.9868 (2)0.11237 (11)0.0622 (5)
N40.29598 (14)0.4436 (2)0.00895 (12)0.0778 (6)
C50.50160 (19)0.6890 (3)0.14531 (15)0.0847 (7)
H5A0.46420.74670.18880.127*
H5B0.51040.58660.16180.127*
H5C0.56500.73600.12570.127*
N70.1425 (2)0.8938 (3)0.04986 (13)0.0840 (6)
C60.23128 (17)0.4557 (3)0.06164 (14)0.0758 (6)
H6A0.24460.55060.09060.091*
H6B0.24460.37200.09870.091*
C100.2798 (2)0.3038 (3)0.03645 (18)0.0907 (8)
H10A0.29160.21640.00170.109*
H10B0.32590.29870.06930.109*
C150.34854 (17)1.1346 (3)0.26812 (13)0.0859 (7)
H15A0.37601.04130.29280.129*
H15B0.34441.20840.30730.129*
H15C0.39021.17340.23680.129*
C70.12597 (18)0.4514 (3)0.01778 (16)0.0875 (7)
H7A0.11020.54410.01280.105*
H7B0.08460.44810.05440.105*
C180.19444 (19)1.2695 (4)0.23650 (17)0.1021 (9)
H18A0.21341.35730.20270.122*
H18B0.24451.25450.26520.122*
C90.1765 (2)0.2990 (3)0.08581 (17)0.0976 (9)
H9A0.16560.20340.11430.117*
H9B0.16670.38160.12340.117*
C80.1027 (2)0.3137 (3)0.03636 (18)0.0964 (8)
H8A0.10420.22170.00560.116*
H8B0.03670.32430.07000.116*
HN3B0.4368 (16)1.015 (3)0.0472 (12)0.068 (6)*
HN3A0.3653 (15)0.953 (2)0.0914 (12)0.061 (6)*
HN7B0.194 (2)0.851 (3)0.0398 (15)0.092 (8)*
HN7A0.086 (2)0.875 (3)0.0231 (15)0.086 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20A0.075 (4)0.070 (4)0.072 (4)0.002 (3)0.025 (3)0.007 (3)
C16A0.078 (4)0.074 (4)0.057 (4)0.000 (3)0.011 (3)0.001 (3)
C19A0.083 (4)0.105 (6)0.068 (4)0.003 (4)0.032 (3)0.011 (3)
C17A0.065 (3)0.089 (4)0.084 (4)0.008 (3)0.017 (3)0.011 (3)
C20B0.061 (3)0.059 (4)0.057 (3)0.006 (3)0.012 (2)0.007 (2)
C16B0.057 (3)0.079 (4)0.056 (4)0.003 (3)0.000 (3)0.002 (3)
C19B0.086 (4)0.083 (5)0.078 (5)0.020 (4)0.023 (4)0.011 (3)
C17B0.065 (3)0.104 (6)0.073 (4)0.014 (4)0.003 (3)0.007 (4)
N20.0565 (9)0.0569 (9)0.0578 (9)0.0122 (7)0.0157 (7)0.0061 (7)
N10.0557 (9)0.0573 (9)0.0586 (9)0.0092 (7)0.0170 (7)0.0045 (7)
N60.0722 (11)0.0659 (10)0.0625 (10)0.0134 (8)0.0269 (8)0.0161 (8)
C10.0476 (10)0.0558 (11)0.0506 (10)0.0043 (8)0.0080 (8)0.0007 (8)
N50.0732 (11)0.0646 (10)0.0541 (9)0.0036 (8)0.0242 (8)0.0026 (8)
N80.0650 (10)0.0764 (11)0.0697 (11)0.0104 (8)0.0240 (8)0.0231 (9)
N30.0783 (12)0.0551 (10)0.0747 (12)0.0164 (9)0.0338 (10)0.0126 (9)
C130.0738 (13)0.0672 (12)0.0518 (11)0.0099 (10)0.0210 (10)0.0125 (9)
C120.0715 (13)0.0561 (11)0.0553 (11)0.0114 (9)0.0257 (10)0.0069 (9)
C30.0682 (12)0.0600 (12)0.0760 (13)0.0113 (9)0.0260 (10)0.0174 (10)
C20.0543 (10)0.0578 (11)0.0660 (12)0.0095 (9)0.0143 (9)0.0046 (9)
C140.0727 (13)0.0650 (12)0.0512 (11)0.0045 (10)0.0228 (10)0.0006 (9)
C40.0548 (11)0.0660 (12)0.0611 (11)0.0064 (9)0.0169 (9)0.0076 (10)
C110.0795 (14)0.0564 (11)0.0561 (11)0.0109 (10)0.0272 (11)0.0068 (9)
N40.0822 (12)0.0612 (10)0.0997 (14)0.0233 (9)0.0408 (11)0.0137 (10)
C50.0928 (17)0.0897 (16)0.0841 (16)0.0221 (13)0.0457 (13)0.0206 (13)
N70.0812 (16)0.0935 (15)0.0811 (14)0.0078 (12)0.0272 (12)0.0374 (12)
C60.0790 (15)0.0723 (14)0.0811 (14)0.0201 (11)0.0292 (12)0.0006 (12)
C100.1000 (19)0.0553 (13)0.126 (2)0.0135 (12)0.0452 (17)0.0109 (13)
C150.0708 (14)0.120 (2)0.0663 (14)0.0035 (13)0.0170 (11)0.0171 (14)
C70.0761 (15)0.0896 (17)0.0987 (18)0.0061 (13)0.0251 (13)0.0031 (15)
C180.0704 (16)0.145 (3)0.0921 (18)0.0128 (16)0.0228 (13)0.0197 (18)
C90.124 (2)0.0717 (16)0.0945 (19)0.0238 (15)0.0227 (17)0.0130 (13)
C80.0778 (16)0.0921 (18)0.111 (2)0.0215 (13)0.0074 (14)0.0036 (16)
Geometric parameters (Å, º) top
C20A—C19A1.500 (11)N3—HN3B0.86 (2)
C20A—N81.500 (7)N3—HN3A0.90 (2)
C20A—H20A0.9700C13—C141.358 (3)
C20A—H20B0.9700C13—C121.400 (3)
C16A—C17A1.504 (11)C13—H130.9300
C16A—N81.552 (7)C3—C41.361 (3)
C16A—H16A0.9700C3—C21.403 (3)
C16A—H16B0.9700C3—H30.9300
C19A—C181.507 (9)C2—N41.366 (2)
C19A—H19A0.9700C14—C151.495 (3)
C19A—H19B0.9700C4—C51.498 (3)
C17A—C181.507 (7)C11—N71.356 (3)
C17A—H17A0.9700N4—C101.451 (3)
C17A—H17B0.9700N4—C61.455 (3)
C20B—N81.477 (6)C5—H5A0.9600
C20B—C19B1.504 (11)C5—H5B0.9600
C20B—H20C0.9700C5—H5C0.9600
C20B—H20D0.9700N7—HN7B0.86 (3)
C16B—N81.445 (6)N7—HN7A0.83 (3)
C16B—C17B1.498 (12)C6—C71.483 (3)
C16B—H16C0.9700C6—H6A0.9700
C16B—H16D0.9700C6—H6B0.9700
C19B—C181.580 (9)C10—C91.490 (4)
C19B—H19C0.9700C10—H10A0.9700
C19B—H19D0.9700C10—H10B0.9700
C17B—C181.553 (7)C15—H15A0.9600
C17B—H17C0.9700C15—H15B0.9600
C17B—H17D0.9700C15—H15C0.9600
N2—C11.342 (2)C7—C81.524 (4)
N2—C21.344 (2)C7—H7A0.9700
N1—C41.344 (2)C7—H7B0.9700
N1—C11.345 (2)C18—H18A0.9700
N6—C111.331 (3)C18—H18B0.9700
N6—C121.342 (2)C9—C81.514 (4)
C1—N31.343 (2)C9—H9A0.9700
N5—C111.337 (3)C9—H9B0.9700
N5—C141.351 (2)C8—H8A0.9700
N8—C121.358 (3)C8—H8B0.9700
C19A—C20A—N8110.5 (7)C4—C3—H3120.9
C19A—C20A—H20A109.6C2—C3—H3120.9
N8—C20A—H20A109.6N2—C2—N4117.42 (17)
C19A—C20A—H20B109.6N2—C2—C3120.31 (17)
N8—C20A—H20B109.5N4—C2—C3122.24 (18)
H20A—C20A—H20B108.1N5—C14—C13122.76 (19)
C17A—C16A—N8108.1 (7)N5—C14—C15116.32 (18)
C17A—C16A—H16A110.1C13—C14—C15120.91 (19)
N8—C16A—H16A110.1N1—C4—C3122.61 (18)
C17A—C16A—H16B110.1N1—C4—C5115.69 (17)
N8—C16A—H16B110.1C3—C4—C5121.69 (18)
H16A—C16A—H16B108.4N6—C11—N5127.62 (18)
C20A—C19A—C18107.5 (7)N6—C11—N7116.2 (2)
C20A—C19A—H19A110.2N5—C11—N7116.2 (2)
C18—C19A—H19A110.2C2—N4—C10122.80 (19)
C20A—C19A—H19B110.2C2—N4—C6122.29 (17)
C18—C19A—H19B110.2C10—N4—C6112.38 (17)
H19A—C19A—H19B108.5C4—C5—H5A109.5
C16A—C17A—C18108.0 (6)C4—C5—H5B109.5
C16A—C17A—H17A110.1H5A—C5—H5B109.5
C18—C17A—H17A110.1C4—C5—H5C109.5
C16A—C17A—H17B110.1H5A—C5—H5C109.5
C18—C17A—H17B110.1H5B—C5—H5C109.5
H17A—C17A—H17B108.4C11—N7—HN7B121.5 (18)
N8—C20B—C19B107.4 (7)C11—N7—HN7A117.4 (19)
N8—C20B—H20C110.2HN7B—N7—HN7A121 (3)
C19B—C20B—H20C110.2N4—C6—C7110.8 (2)
N8—C20B—H20D110.2N4—C6—H6A109.5
C19B—C20B—H20D110.2C7—C6—H6A109.5
H20C—C20B—H20D108.5N4—C6—H6B109.5
N8—C16B—C17B108.6 (7)C7—C6—H6B109.5
N8—C16B—H16C110.0H6A—C6—H6B108.1
C17B—C16B—H16C110.0N4—C10—C9110.1 (2)
N8—C16B—H16D110.0N4—C10—H10A109.6
C17B—C16B—H16D110.0C9—C10—H10A109.6
H16C—C16B—H16D108.3N4—C10—H10B109.6
C20B—C19B—C18110.0 (6)C9—C10—H10B109.6
C20B—C19B—H19C109.7H10A—C10—H10B108.2
C18—C19B—H19C109.7C14—C15—H15A109.5
C20B—C19B—H19D109.7C14—C15—H15B109.5
C18—C19B—H19D109.7H15A—C15—H15B109.5
H19C—C19B—H19D108.2C14—C15—H15C109.5
C16B—C17B—C18110.2 (6)H15A—C15—H15C109.5
C16B—C17B—H17C109.6H15B—C15—H15C109.5
C18—C17B—H17C109.6C6—C7—C8112.2 (2)
C16B—C17B—H17D109.6C6—C7—H7A109.2
C18—C17B—H17D109.6C8—C7—H7A109.2
H17C—C17B—H17D108.1C6—C7—H7B109.2
C1—N2—C2116.66 (16)C8—C7—H7B109.2
C4—N1—C1115.39 (15)H7A—C7—H7B107.9
C11—N6—C12116.79 (17)C19A—C18—C17A110.8 (5)
N2—C1—N3117.06 (17)C19A—C18—C17B115.2 (4)
N2—C1—N1126.63 (16)C17A—C18—C19B116.0 (4)
N3—C1—N1116.30 (16)C17B—C18—C19B104.4 (6)
C11—N5—C14114.52 (17)C19A—C18—H18A109.5
C12—N8—C16B116.9 (3)C17A—C18—H18A109.5
C12—N8—C20B117.6 (3)C19A—C18—H18B109.5
C16B—N8—C20B115.1 (4)C17A—C18—H18B109.5
C12—N8—C20A125.1 (3)C17B—C18—H18B128.8
C16B—N8—C20A117.9 (4)C19B—C18—H18B126.7
C12—N8—C16A122.9 (3)H18A—C18—H18B108.1
C20B—N8—C16A119.3 (4)C10—C9—C8110.9 (2)
C20A—N8—C16A106.9 (5)C10—C9—H9A109.5
C1—N3—HN3B117.9 (14)C8—C9—H9A109.5
C1—N3—HN3A123.4 (13)C10—C9—H9B109.5
HN3B—N3—HN3A118 (2)C8—C9—H9B109.5
C14—C13—C12118.35 (18)H9A—C9—H9B108.0
C14—C13—H13120.8C9—C8—C7111.2 (2)
C12—C13—H13120.8C9—C8—H8A109.4
N6—C12—N8117.23 (18)C7—C8—H8A109.4
N6—C12—C13119.96 (18)C9—C8—H8B109.4
N8—C12—C13122.81 (18)C7—C8—H8B109.4
C4—C3—C2118.24 (18)H8A—C8—H8B108.0
N8—C20A—C19A—C1861.6 (12)C4—C3—C2—N22.5 (3)
N8—C16A—C17A—C1862.1 (10)C4—C3—C2—N4175.7 (2)
N8—C20B—C19B—C1859.8 (11)C11—N5—C14—C130.5 (3)
N8—C16B—C17B—C1860.5 (12)C11—N5—C14—C15179.23 (19)
C2—N2—C1—N3178.88 (17)C12—C13—C14—N50.4 (3)
C2—N2—C1—N12.3 (3)C12—C13—C14—C15179.1 (2)
C4—N1—C1—N21.2 (3)C1—N1—C4—C32.9 (3)
C4—N1—C1—N3177.69 (17)C1—N1—C4—C5176.35 (18)
C17B—C16B—N8—C12156.0 (6)C2—C3—C4—N11.2 (3)
C17B—C16B—N8—C20B59.8 (12)C2—C3—C4—C5178.0 (2)
C17B—C16B—N8—C20A26.6 (13)C12—N6—C11—N50.9 (3)
C17B—C16B—N8—C16A45.9 (10)C12—N6—C11—N7178.89 (18)
C19B—C20B—N8—C12156.4 (6)C14—N5—C11—N60.3 (3)
C19B—C20B—N8—C16B59.6 (12)C14—N5—C11—N7179.58 (19)
C19B—C20B—N8—C20A43.2 (8)N2—C2—N4—C10171.1 (2)
C19B—C20B—N8—C16A28.6 (12)C3—C2—N4—C1010.7 (3)
C19A—C20A—N8—C12141.8 (6)N2—C2—N4—C610.5 (3)
C19A—C20A—N8—C16B35.4 (14)C3—C2—N4—C6171.3 (2)
C19A—C20A—N8—C20B56.9 (9)C2—N4—C6—C7103.3 (2)
C19A—C20A—N8—C16A63.1 (12)C10—N4—C6—C759.1 (3)
C17A—C16A—N8—C12141.3 (5)C2—N4—C10—C9101.0 (3)
C17A—C16A—N8—C16B55.4 (10)C6—N4—C10—C961.3 (3)
C17A—C16A—N8—C20B33.4 (11)N4—C6—C7—C852.6 (3)
C17A—C16A—N8—C20A62.9 (10)C20A—C19A—C18—C17A60.3 (12)
C11—N6—C12—N8178.51 (18)C20A—C19A—C18—C17B27.0 (14)
C11—N6—C12—C130.9 (3)C20A—C19A—C18—C19B46.2 (9)
C16B—N8—C12—N625.3 (5)C16A—C17A—C18—C19A61.9 (12)
C20B—N8—C12—N6168.6 (4)C16A—C17A—C18—C17B42.7 (7)
C20A—N8—C12—N6157.5 (5)C16A—C17A—C18—C19B31.3 (13)
C16A—N8—C12—N66.2 (5)C16B—C17B—C18—C19A33.2 (14)
C16B—N8—C12—C13154.1 (5)C16B—C17B—C18—C17A55.6 (8)
C20B—N8—C12—C1310.8 (5)C16B—C17B—C18—C19B61.3 (12)
C20A—N8—C12—C1323.1 (6)C20B—C19B—C18—C19A54.9 (9)
C16A—N8—C12—C13174.4 (4)C20B—C19B—C18—C17A31.0 (13)
C14—C13—C12—N60.3 (3)C20B—C19B—C18—C17B61.6 (12)
C14—C13—C12—N8179.10 (19)N4—C10—C9—C856.8 (3)
C1—N2—C2—N4174.23 (18)C10—C9—C8—C751.3 (3)
C1—N2—C2—C34.0 (3)C6—C7—C8—C949.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—HN3B···N1i0.86 (2)2.19 (2)3.043 (2)173.3 (19)
N3—HN3A···N50.90 (2)2.34 (2)3.210 (2)162.1 (17)
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC10H16N4
Mr192.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.9605 (4), 8.7564 (3), 17.7055 (6)
β (°) 104.381 (2)
V3)2096.57 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.972, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
15644, 3708, 2657
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.171, 1.10
No. of reflections3708
No. of parameters308
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.20

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—HN3B···N1i0.86 (2)2.19 (2)3.043 (2)173.3 (19)
N3—HN3A···N50.90 (2)2.34 (2)3.210 (2)162.1 (17)
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

The authors thank Dr S. C. Sharma, Vice Chancellor, Tumkur University, for his constant encouragement. BSP thanks Dr H. C. Devarajegowda, Department of Physics, Yuvarajas College (constituent), University of Mysore, for his support and guidence.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPatel, R., Desai, K. & Chikhalia, K. (2003). J. Indian Chem. Soc. 80, 138–145.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreenivasa, S., ManojKumar, K. E., Suchetan, P. A., Srinivasan, T., Palakshamurthy, B. S. & Velmurgan, D. (2012). Acta Cryst. E68, o3371.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds