supplementary materials


sj5295 scheme

Acta Cryst. (2013). E69, m125    [ doi:10.1107/S1600536813002274 ]

catena-Poly[[bis([mu]2-1,4,7,10,13,16-hexaoxacyclooctadecane)dipotassium]-[mu]2-iodido-(iodidocadmium)-di-[mu]2-iodido-(iodidocadmium)-[mu]2-iodido]

K. Rajarajan, A. Pugazhenthi and M. NizamMohideen

Abstract top

The reaction of CdCl2, 18-crown-6 and KI in water yields the title coordination polymer, [{K(C12H24O6)}2Cd2I6]n. The potassium ion lies approximately in the plane of the crown ether, coordinated by all six crown ether O atoms and also by an iodide anion bound to a cadmium atom. A C atom of the crown ether is disordered over two positions with site occupancies of 0.77 (2) and 0.23 (2). Two K(18-crown-6)+ units are linked by inversion symmetry, forming a [bis([mu]2-18-crown-6)dipottasium] system with approximately square-planar K2O2 units. Inversion symmetry also generates the Cd2I6 fragment and the polymeric system is extended along the c axis by the formation of K-I-Cd bridges.

Comment top

There is a general interest in polyiodides as they are well known for having a significant influence on the redox chemistry in dye-sensitized solar cells (Yang et al., 2011).

In a recent paper, we reported the synthesis and crystal structure of catena-Poly[ammonium (cadmium-tri-lthiocyanato- κ4S:N;κ2N:S)-1,4,10,13,16- hexaoxacyclooctadecane (1/1)] (Ramesh et al., 2012). As part of our ongoing investigation of Cd and 18-crown-6 derivatives, we report here the synthesis and structure of the title compound.

The reaction of CdCl2 with 18-crown-6 and KI in de-ionized water yields the title coordination polymer [{K(C12H24O6)}2Cd2I6]n (Fig.1). The carbon atom (C2) of the crown ether is disordered, as detectable from the large displacement parameters for the C atom and short C-O bond lengths. The disorder over two positions was modelled and the site occupancies refined to 0.77 (2) and 0.23 (2). The geometry was regularized by soft restraints.

The potassium ion lies close to the plane of the crown ether deviating by 0.1257 (2)Å from the mean plane of the six crown ether oxygen atoms (Kunz et al., 2009). The K-O (K1, O1-O6) distances range from 2.686 (4) to 3.011 (4)Å and compare well to those of similar complexes (Kunz et al., 2009). K1 is coordinated by all six oxygen atoms of the crown ether and also by the I3 iodide anion bound to the Cd(II) cation forming a K1—I3—Cd1 bridge. The mean Cd-I (Cd1, I1-I3) bond lengths [2.764 (2)Å] and angles around the Cd1 atom range from 95.0 (2)° to 115.5 (2)° and are similar to those reported for comparable complexes (Park et al., 2010; Guo et al., 2006).

Fig. 2. shows a view of the crystal structure down the a axis. The title compound is stabilized by van der Waals forces only, and no classical intra- or intermolecular hydrogen bonds are found.

Related literature top

For applications of polyiodides, see: Yang et al. (2011). For the properties of cadmium compounds, see: Ramesh et al. (2012). For related structures, see: Park et al. (2010); Guo et al. (2006); Kunz et al. (2009).

Experimental top

A mixture of 18-crown-6 (C12H24O6), CdCl2 and KI (molar ratio 1:1:3) was thoroughly dissolved in de-ionized water and stirred for 4 h to obtain a homogeneous mixture. Colorless single crystals were obtained after the filtrate had been allowed to stand at room temperature for two weeks.

Refinement top

The C2 atom of the crown ether is disordered over two positions with refined occupancies of 0.77 (2) and 0.23 (2). The corresponding bond distances involving the disordered atoms were restrained to be equal. Carbon H atoms were placed geometrically (C—H = 0.97 Å) and treated as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecular packing viewed along the a axis.
catena-Poly[[bis(µ2-1,4,7,10,13,16-hexaoxacyclooctadecane)dipotassium]-µ2-iodido-(iodidocadmium)-di-µ2-iodido-(iodidocadmium)-µ2-iodido] top
Crystal data top
[Cd2K2I6(C12H24O6)2]F(000) = 1480
Mr = 796.51Dx = 2.254 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5995 reflections
a = 10.627 (2) Åθ = 2.4–31.1°
b = 14.986 (2) ŵ = 5.07 mm1
c = 15.190 (3) ÅT = 293 K
β = 103.959 (1)°Block, colorless
V = 2347.7 (7) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4129 independent reflections
Radiation source: fine-focus sealed tube3585 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and φ scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1212
Tmin = 0.430, Tmax = 0.631k = 1717
21969 measured reflectionsl = 1817
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.023P)2 + 7.1196P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4129 reflectionsΔρmax = 1.53 e Å3
219 parametersΔρmin = 1.16 e Å3
6 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00235 (8)
Crystal data top
[Cd2K2I6(C12H24O6)2]V = 2347.7 (7) Å3
Mr = 796.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.627 (2) ŵ = 5.07 mm1
b = 14.986 (2) ÅT = 293 K
c = 15.190 (3) Å0.20 × 0.15 × 0.10 mm
β = 103.959 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4129 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3585 reflections with I > 2σ(I)
Tmin = 0.430, Tmax = 0.631Rint = 0.025
21969 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.067Δρmax = 1.53 e Å3
S = 1.03Δρmin = 1.16 e Å3
4129 reflectionsAbsolute structure: ?
219 parametersFlack parameter: ?
6 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3249 (6)0.2719 (4)0.4090 (5)0.0679 (16)
H1A0.30110.32610.37400.081*0.772 (18)
H1B0.32000.28400.47080.081*0.772 (18)
H1C0.28600.29770.35010.081*0.228 (18)
H1D0.32980.31920.45330.081*0.228 (18)
C20.2332 (7)0.2020 (6)0.3714 (8)0.060 (2)0.772 (18)
H2A0.14810.21820.37900.072*0.772 (18)
H2B0.22750.19660.30700.072*0.772 (18)
C2'0.238 (3)0.2087 (18)0.426 (3)0.055 (5)0.228 (18)
H2'10.15280.22140.38790.066*0.228 (18)
H2'20.23200.21550.48890.066*0.228 (18)
C30.1840 (7)0.0503 (5)0.3846 (7)0.110 (3)
H3A0.10130.06650.39650.131*
H3B0.17050.04490.31930.131*
C40.2172 (7)0.0310 (5)0.4214 (7)0.104 (3)
H4A0.15370.07380.38980.125*
H4B0.21100.02940.48400.125*
C50.3433 (6)0.1295 (4)0.3525 (4)0.0606 (14)
H5A0.30730.10490.29270.073*
H5B0.29000.17960.36140.073*
C60.4776 (6)0.1597 (3)0.3595 (4)0.0577 (14)
H6A0.51750.17680.42160.069*
H6B0.47720.21150.32100.069*
C70.6773 (6)0.1139 (4)0.3315 (4)0.0660 (16)
H7A0.67750.17030.30010.079*
H7B0.72890.12080.39320.079*
C80.7332 (6)0.0427 (4)0.2846 (4)0.0678 (16)
H8A0.81910.06000.27950.081*
H8B0.67920.03420.22380.081*
C90.7834 (6)0.1110 (4)0.2893 (4)0.0642 (15)
H9A0.72160.12240.23210.077*
H9B0.86650.09700.27670.077*
C100.7961 (5)0.1915 (4)0.3483 (5)0.0684 (16)
H10A0.84920.17790.40820.082*
H10B0.83730.23940.32260.082*
C110.6678 (6)0.2865 (4)0.4144 (5)0.0721 (17)
H11A0.71940.33580.40100.087*
H11B0.70720.26600.47540.087*
C120.5374 (6)0.3184 (4)0.4112 (5)0.0760 (18)
H12A0.53940.35500.46420.091*
H12B0.50810.35550.35790.091*
O10.4507 (4)0.2494 (2)0.4086 (3)0.0636 (10)
O20.2691 (3)0.1203 (2)0.4130 (3)0.0595 (9)
O30.3430 (4)0.0632 (2)0.4197 (3)0.0616 (10)
O40.5494 (4)0.0901 (2)0.3323 (2)0.0539 (9)
O50.7407 (4)0.0380 (2)0.3341 (2)0.0568 (9)
O60.6704 (4)0.2180 (3)0.3542 (3)0.0680 (11)
K10.51194 (11)0.07876 (7)0.38443 (8)0.0520 (3)
Cd10.10508 (3)0.09039 (2)0.07415 (2)0.04486 (11)
I10.01908 (3)0.06719 (2)0.11826 (2)0.05110 (11)
I20.00034 (4)0.23919 (3)0.12810 (3)0.06725 (14)
I30.36601 (3)0.07316 (3)0.13778 (3)0.05971 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.070 (4)0.049 (3)0.089 (4)0.022 (3)0.030 (3)0.009 (3)
C20.050 (4)0.066 (5)0.059 (6)0.019 (3)0.004 (4)0.005 (5)
C2'0.048 (8)0.060 (9)0.058 (10)0.024 (8)0.012 (10)0.002 (10)
C30.045 (4)0.076 (5)0.198 (10)0.006 (4)0.009 (5)0.005 (6)
C40.063 (4)0.074 (5)0.186 (9)0.012 (4)0.052 (5)0.010 (5)
C50.071 (4)0.050 (3)0.059 (3)0.012 (3)0.013 (3)0.002 (3)
C60.082 (4)0.038 (3)0.055 (3)0.000 (3)0.019 (3)0.000 (2)
C70.069 (4)0.049 (3)0.085 (4)0.018 (3)0.028 (3)0.001 (3)
C80.072 (4)0.065 (4)0.076 (4)0.011 (3)0.038 (3)0.011 (3)
C90.053 (3)0.076 (4)0.070 (4)0.003 (3)0.028 (3)0.004 (3)
C100.050 (3)0.070 (4)0.089 (4)0.011 (3)0.024 (3)0.002 (3)
C110.068 (4)0.065 (4)0.079 (4)0.010 (3)0.009 (3)0.011 (3)
C120.086 (5)0.046 (3)0.100 (5)0.010 (3)0.031 (4)0.013 (3)
O10.058 (2)0.045 (2)0.088 (3)0.0044 (18)0.018 (2)0.0001 (19)
O20.049 (2)0.051 (2)0.078 (3)0.0035 (17)0.0144 (19)0.0012 (18)
O30.060 (2)0.049 (2)0.078 (3)0.0065 (18)0.022 (2)0.0076 (18)
O40.061 (2)0.0392 (18)0.065 (2)0.0083 (16)0.0214 (18)0.0028 (16)
O50.062 (2)0.059 (2)0.056 (2)0.0023 (18)0.0263 (18)0.0008 (17)
O60.058 (2)0.058 (2)0.092 (3)0.0112 (19)0.024 (2)0.013 (2)
K10.0499 (6)0.0392 (6)0.0724 (8)0.0007 (5)0.0256 (6)0.0059 (5)
Cd10.0438 (2)0.0415 (2)0.0481 (2)0.00042 (15)0.00872 (15)0.00202 (15)
I10.0600 (2)0.0530 (2)0.04247 (19)0.01331 (16)0.01657 (15)0.00179 (14)
I20.0590 (2)0.0554 (2)0.0825 (3)0.01439 (18)0.0077 (2)0.01480 (19)
I30.0436 (2)0.0646 (2)0.0658 (2)0.00437 (16)0.00337 (16)0.00944 (17)
Geometric parameters (Å, º) top
C1—O11.380 (7)C8—O51.416 (6)
C1—C2'1.39 (3)C8—H8A0.9700
C1—C21.451 (11)C8—H8B0.9700
C1—H1A0.9700C9—O51.419 (7)
C1—H1B0.9700C9—C101.489 (8)
C1—H1C0.9700C9—H9A0.9700
C1—H1D0.9700C9—H9B0.9700
C2—O21.388 (9)C10—O61.417 (7)
C2—K13.456 (8)C10—H10A0.9700
C2—H2A0.9700C10—H10B0.9700
C2—H2B0.9700C11—O61.379 (7)
C2'—O21.39 (3)C11—C121.455 (8)
C2'—H2'10.9700C11—K13.504 (6)
C2'—H2'20.9700C11—H11A0.9700
C3—C41.352 (10)C11—H11B0.9700
C3—O21.383 (8)C12—O11.380 (7)
C3—H3A0.9700C12—H12A0.9700
C3—H3B0.9700C12—H12B0.9700
C4—O31.427 (8)O1—K12.686 (4)
C4—H4A0.9700O2—K12.788 (4)
C4—H4B0.9700O3—K12.916 (4)
C5—O31.424 (6)O3—K1i3.011 (4)
C5—C61.477 (8)O4—K12.709 (3)
C5—H5A0.9700O5—K12.786 (4)
C5—H5B0.9700O6—K12.788 (4)
C6—O41.413 (6)K1—O3i3.011 (4)
C6—H6A0.9700Cd1—I22.7097 (6)
C6—H6B0.9700Cd1—I32.7197 (7)
C7—O41.408 (6)Cd1—I12.8624 (6)
C7—C81.485 (8)Cd1—I1ii2.8652 (7)
C7—H7A0.9700I1—Cd1ii2.8652 (7)
C7—H7B0.9700
O1—C1—C2'121.5 (11)C11—C12—H12B109.2
O1—C1—C2112.4 (5)H12A—C12—H12B107.9
O1—C1—H1A109.1C12—O1—C1117.3 (4)
C2'—C1—H1A125.1C12—O1—K1122.4 (3)
C2—C1—H1A109.1C1—O1—K1120.0 (3)
O1—C1—H1B109.1C3—O2—C2116.1 (6)
C2'—C1—H1B75.5C3—O2—C2'127.2 (12)
C2—C1—H1B109.1C3—O2—K1110.0 (4)
H1A—C1—H1B107.9C2—O2—K1106.8 (4)
O1—C1—H1C107.0C2'—O2—K1119.8 (12)
C2'—C1—H1C107.0C5—O3—C4114.3 (5)
C2—C1—H1C80.2C5—O3—K1105.6 (3)
H1B—C1—H1C135.0C4—O3—K1112.2 (4)
O1—C1—H1D106.9C5—O3—K1i124.4 (3)
C2'—C1—H1D106.9C4—O3—K1i105.5 (5)
C2—C1—H1D136.0K1—O3—K1i92.68 (11)
H1A—C1—H1D74.4C7—O4—C6113.9 (4)
H1C—C1—H1D106.7C7—O4—K1116.7 (3)
O2—C2—C1112.0 (6)C6—O4—K1118.5 (3)
O2—C2—K150.6 (3)C8—O5—C9112.8 (4)
C1—C2—K183.0 (4)C8—O5—K1113.1 (3)
O2—C2—H2A109.2C9—O5—K1111.4 (3)
C1—C2—H2A109.2C11—O6—C10114.9 (5)
K1—C2—H2A159.8C11—O6—K1109.8 (3)
O2—C2—H2B109.2C10—O6—K1114.6 (3)
C1—C2—H2B109.2O1—K1—O4170.67 (13)
K1—C2—H2B81.8O1—K1—O5120.16 (12)
H2A—C2—H2B107.9O4—K1—O561.03 (11)
C1—C2'—O2115 (2)O1—K1—O659.05 (12)
C1—C2'—H2'1108.5O4—K1—O6120.91 (12)
O2—C2'—H2'1108.5O5—K1—O661.14 (11)
C1—C2'—H2'2108.5O1—K1—O260.16 (11)
O2—C2'—H2'2108.5O4—K1—O2117.43 (12)
H2'1—C2'—H2'2107.5O5—K1—O2173.22 (12)
C4—C3—O2117.9 (7)O6—K1—O2118.49 (12)
C4—C3—K187.1 (4)O1—K1—O3119.29 (12)
O2—C3—K148.2 (3)O4—K1—O360.85 (11)
C4—C3—H3A107.8O5—K1—O3120.48 (11)
O2—C3—H3A107.8O6—K1—O3178.21 (12)
K1—C3—H3A156.0O2—K1—O360.01 (11)
C4—C3—H3B107.8O1—K1—O3i91.24 (12)
O2—C3—H3B107.8O4—K1—O3i98.07 (11)
K1—C3—H3B84.9O5—K1—O3i88.95 (11)
H3A—C3—H3B107.2O6—K1—O3i91.99 (12)
C3—C4—O3116.7 (7)O2—K1—O3i97.83 (11)
C3—C4—H4A108.1O3—K1—O3i87.32 (11)
O3—C4—H4A108.1O1—K1—C242.81 (17)
C3—C4—H4B108.1O4—K1—C2131.82 (18)
O3—C4—H4B108.1O5—K1—C2153.38 (19)
H4A—C4—H4B107.3O6—K1—C297.71 (17)
O3—C5—C6109.4 (4)O2—K1—C222.61 (18)
O3—C5—H5A109.8O3—K1—C280.96 (17)
C6—C5—H5A109.8O3i—K1—C2109.0 (2)
O3—C5—H5B109.8O1—K1—C1142.17 (14)
C6—C5—H5B109.8O4—K1—C11140.31 (14)
H5A—C5—H5B108.2O5—K1—C1179.29 (13)
O4—C6—C5109.5 (4)O6—K1—C1121.74 (13)
O4—C6—H6A109.8O2—K1—C11101.99 (13)
C5—C6—H6A109.8O3—K1—C11156.50 (14)
O4—C6—H6B109.8O3i—K1—C1180.03 (13)
C5—C6—H6B109.8C2—K1—C1184.52 (18)
H6A—C6—H6B108.2O1—K1—C380.91 (15)
O4—C7—C8108.6 (5)O4—K1—C395.91 (16)
O4—C7—H7A110.0O5—K1—C3154.87 (17)
C8—C7—H7A110.0O6—K1—C3136.86 (16)
O4—C7—H7B110.0O2—K1—C321.72 (16)
C8—C7—H7B110.0O3—K1—C341.94 (15)
H7A—C7—H7B108.3O3i—K1—C3105.17 (19)
O5—C8—C7109.7 (5)C2—K1—C339.42 (19)
O5—C8—H8A109.7C11—K1—C3123.07 (17)
C7—C8—H8A109.7O1—K1—I395.98 (9)
O5—C8—H8B109.7O4—K1—I374.79 (8)
C7—C8—H8B109.7O5—K1—I384.10 (8)
H8A—C8—H8B108.2O6—K1—I388.43 (9)
O5—C9—C10109.2 (5)O2—K1—I389.13 (9)
O5—C9—H9A109.8O3—K1—I392.49 (9)
C10—C9—H9A109.8O3i—K1—I3171.82 (8)
O5—C9—H9B109.8C2—K1—I379.04 (19)
C10—C9—H9B109.8C11—K1—I3102.81 (11)
H9A—C9—H9B108.3C3—K1—I379.86 (18)
O6—C10—C9108.4 (5)O1—K1—K1i110.35 (10)
O6—C10—H10A110.0O4—K1—K1i76.54 (8)
C9—C10—H10A110.0O5—K1—K1i109.39 (9)
O6—C10—H10B110.0O6—K1—K1i134.75 (10)
C9—C10—H10B110.0O2—K1—K1i75.86 (8)
H10A—C10—H10B108.4O3—K1—K1i44.54 (8)
O6—C11—C12113.2 (5)O3i—K1—K1i42.78 (7)
O6—C11—K148.5 (3)C2—K1—K1i96.98 (18)
C12—C11—K182.6 (3)C11—K1—K1i120.13 (12)
O6—C11—H11A108.9C3—K1—K1i71.22 (16)
C12—C11—H11A108.9I3—K1—K1i136.43 (4)
K1—C11—H11A157.3I2—Cd1—I3115.538 (18)
O6—C11—H11B108.9I2—Cd1—I1111.13 (2)
C12—C11—H11B108.9I3—Cd1—I1109.058 (17)
K1—C11—H11B85.7I2—Cd1—I1ii110.792 (17)
H11A—C11—H11B107.8I3—Cd1—I1ii113.455 (17)
O1—C12—C11112.3 (5)I1—Cd1—I1ii94.994 (15)
O1—C12—H12A109.2Cd1—I1—Cd1ii85.006 (15)
C11—C12—H12A109.2Cd1—I3—K1120.06 (2)
O1—C12—H12B109.2
O1—C1—C2—O252.9 (10)C3—O2—K1—O48.3 (5)
C2'—C1—C2—O260.7 (19)C2—O2—K1—O4135.1 (5)
O1—C1—C2—K110.6 (5)C2'—O2—K1—O4170.4 (18)
C2'—C1—C2—K1103 (2)C3—O2—K1—O6151.8 (5)
O1—C1—C2'—O221 (3)C2—O2—K1—O625.0 (5)
C2—C1—C2'—O263 (2)C2'—O2—K1—O610.3 (19)
O2—C3—C4—O351.3 (13)C3—O2—K1—O329.3 (5)
K1—C3—C4—O312.7 (8)C2—O2—K1—O3156.1 (5)
O3—C5—C6—O468.8 (6)C2'—O2—K1—O3168.6 (19)
O4—C7—C8—O563.5 (6)C3—O2—K1—O3i111.6 (5)
O5—C9—C10—O668.1 (6)C2—O2—K1—O3i121.6 (5)
O6—C11—C12—O144.6 (8)C2'—O2—K1—O3i86.2 (18)
K1—C11—C12—O16.1 (5)C3—O2—K1—C2126.8 (7)
C11—C12—O1—C1177.6 (6)C2'—O2—K1—C235.3 (16)
C11—C12—O1—K19.4 (8)C3—O2—K1—C11167.0 (5)
C2'—C1—O1—C12166 (2)C2—O2—K1—C1140.2 (5)
C2—C1—O1—C12157.4 (7)C2'—O2—K1—C114.8 (18)
C2'—C1—O1—K121 (2)C2—O2—K1—C3126.8 (7)
C2—C1—O1—K115.8 (8)C2'—O2—K1—C3162.1 (19)
C4—C3—O2—C2178.1 (9)C3—O2—K1—I364.1 (5)
K1—C3—O2—C2121.4 (7)C2—O2—K1—I362.7 (5)
C4—C3—O2—C2'143 (2)C2'—O2—K1—I398.1 (18)
K1—C3—O2—C2'160 (2)C3—O2—K1—K1i74.6 (5)
C4—C3—O2—K156.6 (10)C2—O2—K1—K1i158.6 (5)
C1—C2—O2—C3177.0 (7)C2'—O2—K1—K1i123.2 (18)
K1—C2—O2—C3123.1 (7)C5—O3—K1—O1143.2 (3)
C1—C2—O2—C2'58 (2)C4—O3—K1—O118.0 (5)
K1—C2—O2—C2'118 (2)K1i—O3—K1—O189.92 (14)
C1—C2—O2—K159.9 (8)C5—O3—K1—O426.1 (3)
C1—C2'—O2—C3148.2 (16)C4—O3—K1—O4151.3 (5)
C1—C2'—O2—C265 (3)K1i—O3—K1—O4100.78 (13)
C1—C2'—O2—K111 (3)C5—O3—K1—O539.7 (4)
C6—C5—O3—C4178.0 (5)C4—O3—K1—O5164.9 (5)
C6—C5—O3—K158.1 (5)K1i—O3—K1—O587.20 (13)
C6—C5—O3—K1i46.3 (5)C5—O3—K1—O2132.5 (3)
C3—C4—O3—C5103.7 (8)C4—O3—K1—O27.3 (5)
C3—C4—O3—K116.6 (10)K1i—O3—K1—O2100.63 (13)
C3—C4—O3—K1i116.1 (8)C5—O3—K1—O3i126.9 (3)
C8—C7—O4—C6168.6 (5)C4—O3—K1—O3i107.9 (5)
C8—C7—O4—K147.6 (6)K1i—O3—K1—O3i0.0
C5—C6—O4—C7176.6 (5)C5—O3—K1—C2123.4 (4)
C5—C6—O4—K140.3 (5)C4—O3—K1—C21.8 (5)
C7—C8—O5—C9175.2 (5)K1i—O3—K1—C2109.7 (2)
C7—C8—O5—K147.7 (6)C5—O3—K1—C11175.9 (4)
C10—C9—O5—C8176.6 (5)C4—O3—K1—C1150.8 (6)
C10—C9—O5—K155.0 (5)K1i—O3—K1—C1157.2 (4)
C12—C11—O6—C10173.5 (5)C5—O3—K1—C3116.8 (4)
K1—C11—O6—C10130.9 (5)C4—O3—K1—C38.4 (5)
C12—C11—O6—K155.5 (6)K1i—O3—K1—C3116.4 (3)
C9—C10—O6—C11173.6 (5)C5—O3—K1—I344.9 (3)
C9—C10—O6—K145.0 (6)C4—O3—K1—I380.3 (5)
C12—O1—K1—O510.5 (5)K1i—O3—K1—I3171.81 (8)
C1—O1—K1—O5162.3 (4)C5—O3—K1—K1i126.9 (3)
C12—O1—K1—O612.6 (4)C4—O3—K1—K1i107.9 (5)
C1—O1—K1—O6160.3 (4)O2—C2—K1—O1133.4 (7)
C12—O1—K1—O2177.3 (5)C1—C2—K1—O17.4 (4)
C1—O1—K1—O29.8 (4)O2—C2—K1—O457.3 (6)
C12—O1—K1—O3166.6 (4)C1—C2—K1—O4176.7 (4)
C1—O1—K1—O320.5 (5)O2—C2—K1—O5166.8 (3)
C12—O1—K1—O3i79.0 (5)C1—C2—K1—O567.1 (8)
C1—O1—K1—O3i108.2 (4)O2—C2—K1—O6158.0 (5)
C12—O1—K1—C2163.9 (6)C1—C2—K1—O631.9 (5)
C1—O1—K1—C28.9 (5)C1—C2—K1—O2126.0 (9)
C12—O1—K1—C115.4 (4)O2—C2—K1—O320.8 (5)
C1—O1—K1—C11178.2 (5)C1—C2—K1—O3146.9 (5)
C12—O1—K1—C3175.8 (5)O2—C2—K1—O3i63.2 (5)
C1—O1—K1—C33.0 (4)C1—C2—K1—O3i62.9 (5)
C12—O1—K1—I397.1 (5)O2—C2—K1—C11140.6 (5)
C1—O1—K1—I375.7 (4)C1—C2—K1—C1114.6 (5)
C12—O1—K1—K1i118.2 (4)O2—C2—K1—C327.8 (4)
C1—O1—K1—K1i69.0 (4)C1—C2—K1—C3153.9 (8)
C7—O4—K1—O516.9 (3)O2—C2—K1—I3115.1 (5)
C6—O4—K1—O5159.0 (4)C1—C2—K1—I3118.8 (5)
C7—O4—K1—O629.8 (4)O2—C2—K1—K1i20.9 (5)
C6—O4—K1—O6172.0 (3)C1—C2—K1—K1i105.1 (5)
C7—O4—K1—O2170.6 (3)O6—C11—K1—O1134.5 (5)
C6—O4—K1—O228.5 (4)C12—C11—K1—O14.3 (4)
C7—O4—K1—O3149.8 (4)O6—C11—K1—O431.8 (5)
C6—O4—K1—O37.6 (3)C12—C11—K1—O4161.9 (4)
C7—O4—K1—O3i67.4 (4)O6—C11—K1—O531.6 (4)
C6—O4—K1—O3i74.7 (4)C12—C11—K1—O5161.7 (4)
C7—O4—K1—C2168.0 (4)C12—C11—K1—O6130.1 (6)
C6—O4—K1—C249.8 (5)O6—C11—K1—O2141.6 (4)
C7—O4—K1—C1116.7 (5)C12—C11—K1—O211.5 (4)
C6—O4—K1—C11158.8 (4)O6—C11—K1—O3179.1 (3)
C7—O4—K1—C3173.7 (4)C12—C11—K1—O349.0 (6)
C6—O4—K1—C331.5 (4)O6—C11—K1—O3i122.4 (4)
C7—O4—K1—I3108.5 (4)C12—C11—K1—O3i107.4 (4)
C6—O4—K1—I3109.3 (3)O6—C11—K1—C2127.2 (4)
C7—O4—K1—K1i104.6 (4)C12—C11—K1—C23.0 (4)
C6—O4—K1—K1i37.5 (3)O6—C11—K1—C3135.9 (4)
C8—O5—K1—O1152.3 (3)C12—C11—K1—C35.7 (5)
C9—O5—K1—O124.1 (4)O6—C11—K1—I349.8 (4)
C8—O5—K1—O417.0 (3)C12—C11—K1—I380.4 (4)
C9—O5—K1—O4145.2 (4)O6—C11—K1—K1i137.9 (3)
C8—O5—K1—O6150.3 (4)C12—C11—K1—K1i91.9 (4)
C9—O5—K1—O622.1 (3)C4—C3—K1—O1148.6 (6)
C8—O5—K1—O330.6 (4)O2—C3—K1—O116.2 (5)
C9—O5—K1—O3158.8 (3)C4—C3—K1—O440.3 (6)
C8—O5—K1—O3i116.9 (4)O2—C3—K1—O4172.6 (5)
C9—O5—K1—O3i114.9 (3)C4—C3—K1—O562.4 (9)
C8—O5—K1—C2109.6 (5)O2—C3—K1—O5165.2 (3)
C9—O5—K1—C218.6 (6)C4—C3—K1—O6169.8 (5)
C8—O5—K1—C11163.1 (4)O2—C3—K1—O637.4 (6)
C9—O5—K1—C1134.9 (3)C4—C3—K1—O2132.4 (10)
C8—O5—K1—C38.4 (6)C4—C3—K1—O38.2 (5)
C9—O5—K1—C3119.8 (5)O2—C3—K1—O3140.6 (6)
C8—O5—K1—I358.8 (3)C4—C3—K1—O3i59.8 (6)
C9—O5—K1—I369.4 (3)O2—C3—K1—O3i72.6 (5)
C8—O5—K1—K1i78.6 (4)C4—C3—K1—C2161.4 (8)
C9—O5—K1—K1i153.3 (3)O2—C3—K1—C229.0 (4)
C11—O6—K1—O133.9 (4)C4—C3—K1—C11147.6 (6)
C10—O6—K1—O1165.0 (4)O2—C3—K1—C1115.3 (6)
C11—O6—K1—O4156.9 (4)C4—C3—K1—I3113.6 (6)
C10—O6—K1—O425.9 (4)O2—C3—K1—I3114.0 (5)
C11—O6—K1—O5144.0 (4)C4—C3—K1—K1i33.3 (6)
C10—O6—K1—O512.9 (4)O2—C3—K1—K1i99.0 (5)
C11—O6—K1—O243.7 (4)I2—Cd1—I1—Cd1ii114.57 (2)
C10—O6—K1—O2174.8 (4)I3—Cd1—I1—Cd1ii116.930 (19)
C11—O6—K1—O3i56.3 (4)I1ii—Cd1—I1—Cd1ii0.0
C10—O6—K1—O3i74.8 (4)I2—Cd1—I3—K155.85 (3)
C11—O6—K1—C253.2 (4)I1—Cd1—I3—K170.15 (3)
C10—O6—K1—C2175.8 (4)I1ii—Cd1—I3—K1174.64 (2)
C10—O6—K1—C11131.1 (6)O1—K1—I3—Cd165.72 (9)
C11—O6—K1—C358.5 (5)O4—K1—I3—Cd1112.93 (8)
C10—O6—K1—C3170.4 (4)O5—K1—I3—Cd1174.47 (8)
C11—O6—K1—I3131.9 (4)O6—K1—I3—Cd1124.39 (9)
C10—O6—K1—I397.0 (4)O2—K1—I3—Cd15.86 (8)
C11—O6—K1—K1i54.7 (4)O3—K1—I3—Cd154.07 (8)
C10—O6—K1—K1i76.4 (4)C2—K1—I3—Cd126.22 (15)
C3—O2—K1—O1161.4 (5)C11—K1—I3—Cd1107.96 (11)
C2—O2—K1—O134.7 (5)C3—K1—I3—Cd113.90 (13)
C2'—O2—K1—O10.7 (18)K1i—K1—I3—Cd162.41 (7)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z.
Acknowledgements top

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help in collecting the X-ray intensity data. KR thanks the University Grants Commission for financial support granted under a Major Research Project [F. No. 41–1008/2012 (SR)].

references
References top

Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Guo, H.-X., Yang, L.-M., Lin, Z.-X. & Zou, X.-J. (2006). Acta Cryst. E62, m2863–m2865.

Kunz, K., Lerner, H.-W. & Bolte, M. (2009). Acta Cryst. E65, m171.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Park, B. K., Eom, G. H., Kim, S. H., Kwak, H., Yoo, S. M., Lee, Y. J., Kim, C., Kim, S. J. & Kim, Y. (2010). Polyhedron, 29, 773–786.

Ramesh, V., Rajarajan, K., Kumar, K. S., Subashini, A. & NizamMohideen, M. (2012). Acta Cryst. E68, m335–m336.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Yang, Y., Sun, R., Shi, C., Wu, Y. & Xia, M. (2011). Int. J. Photoenergy, Article ID, 986869, 5 pages; doi:10.1155/2011/986869.