organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl [(2-chloro­anilino)(1,3-di­phenyl-1H-pyrazol-4-yl)meth­yl]phospho­nate

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bOrganic Chemistry Laboratory, CLRI, Chennai, Tamilnadu, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 16 December 2012; accepted 22 December 2012; online 4 January 2013)

In the title compound, C26H27ClN3O3P, the mean plane of the central pyrazole ring forms a dihedral angle of 71.37 (14)° with the chloro­phenyl ring. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with R22(10) ring motifs. The 3-phenyl ring is disordered with four C atoms occupying two sets of sites with an occupancy ratio of 0.748 (4):0.252 (4).

Related literature

For information on pyrazole derivatives, see: Sullivan et al. (2006[Sullivan, T. J., Truglio, J. J., Boyne, M. E., Novichenok, P., Zhang, X., Stratton, C. F., Li, H.-J., Kaur, T., Amin, A., Johnson, F., Slayden, R. A., Kisker, C. & Tonge, P. J. (2006). ACS Chem. Biol. 1, 43-53.]); Patel et al. (2010[Patel, C. K., Rami, C. S., Panigrahi, B. & Patel, C. N. (2010). J. Chem. Pharm. Res. 2, 73-78.]). For related structures, see: Saeed et al. (2009[Saeed, A., Hussain, S. & Bolte, M. (2009). Acta Cryst. E65, o1231.]); Suresh et al. (2012[Suresh, G., Sabari, V., Nandakumar, A., Perumal, P. T. & Aravindhan, S. (2012). Acta Cryst. E68, o1554.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C26H27ClN3O3P

  • Mr = 495.93

  • Monoclinic, P 21 /c

  • a = 11.2379 (3) Å

  • b = 23.7075 (6) Å

  • c = 9.4570 (2) Å

  • β = 90.809 (1)°

  • V = 2519.31 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.941, Tmax = 0.957

  • 14995 measured reflections

  • 4289 independent reflections

  • 3322 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.135

  • S = 1.05

  • 4289 reflections

  • 346 parameters

  • 99 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.86 2.37 3.199 (3) 163
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazoles exhibit a variety of pharmacological properties for e.g antibacterial and anti-inflammatory activities (Sullivan et al., 2006; Patel et al., 2010). In view of their importance, the title compound was synthesized and we report herein on its crystal structure.

The molecular structure of the title molecule is illustrated in Fig. 1. The bond lengths N2—C13 and N3—C14 are normal and comparable to the corresponding values observed in the related structure of 3-(3-Chloroanilino)-1-(3,5-dimethyl-1H-pyrazol-1-yl)propan-1-one (Saeed et al., 2009). The pyrazole ring system is essentially planar, with a maximum deviation of -0.003 (2) Å for atom N2. The mean plane of the pyrazole ring and the chlorophenyl ring (C17-C22) are almost perpendicular to one another with a dihedral angle of 71.37 (14) °, whereas the two phenyl rings (C4-C9) and the major component of ring (C10-C15) are twisted out of the plane of the pyrazole ring, as can be seen from the dihedral angles of 15.84 (14)° and 39.2 (2)°, respectively.

The sum of the bond angles around atom N2 [359.75 (2)°] of the pyrazole ring is in accordance with sp3 hybridization. Atoms Cl1 and N3 deviate by -0.0278 (9) Å and 0.0206 (21) Å from the mean plane of the benzene (C17—C22) ring. The four carbon atoms in the phenyl ring (C10-C16) are disordered over two sets of sites [site occupancies = 0.748 (4) and 0.252 (4)]. The phosphinite group assumes an extended conformation as can be seen from the torsion angles P1—O2—C23—C24 of 179.2 (3)° and P1—O3—C25—C26 of 131.2 (2)°. They are close to those observed in a similar structure (Suresh et al., 2012).

In the crystal, a pair of N—H···O hydrogen bonds link molecules to form inversion dimers, with an R22(10) ring motif (Bernstein et al., 1995), that stack along the c axis (Fig. 2 and Table 1).

Related literature top

For information on pyrazole derivatives, see: Sullivan et al. (2006); Patel et al. (2010). For related structures, see: Saeed et al. (2009); Suresh et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (1 mmol), 2-chloroaniline (1 mmol), diethyl phosphite (1.5 mmol), and pottasium hydrogen sulfate (20 mol%) under neat condition was stirred at room temperature. After completion of the reaction as indicated by TLC, it was poured into water and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and concentrated under vacuum. The crude product was chromatographed using an ethyl acetate/petroleum ether (30:70) mixture. Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

Four carbon atoms in phenyl ring (C10-C16) are disordered over two positions (C11/C11', C12/C12', C14/C14' and C15/C15') with refined occupancies of 0.748 (4)/0.252 (4). All C-bound H atoms were fixed geometrically and allowed to ride on their parent atom: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom numbering. Displacement ellipsoids are drawn at the 30% probability level. Four C atoms in phenyl ring (C10-C16) are disordered over two positions (C11/C11', C12/C12', C14/C14' and C15/C15') with refined occupancies of 0.748 (4)/0.252 (4).
[Figure 2] Fig. 2. A view along the c axis of the crystal packing of the title compound, showing the formation of the inversion dimers (N-H···O hydrogen bonds are drawn as dashed lines).
Diethyl [(2-chloroanilino)(1,3-diphenyl-1H-pyrazol-4-yl)methyl]phosphonate top
Crystal data top
C26H27ClN3O3PF(000) = 1040
Mr = 495.93Dx = 1.308 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4289 reflections
a = 11.2379 (3) Åθ = 1.8–25.0°
b = 23.7075 (6) ŵ = 0.25 mm1
c = 9.4570 (2) ÅT = 298 K
β = 90.809 (1)°Monoclinic, colourless
V = 2519.31 (11) Å30.25 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4289 independent reflections
Radiation source: fine-focus sealed tube3322 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and ϕ scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1213
Tmin = 0.941, Tmax = 0.957k = 2727
14995 measured reflectionsl = 118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0609P)2 + 1.4582P]
where P = (Fo2 + 2Fc2)/3
4289 reflections(Δ/σ)max = 0.001
346 parametersΔρmax = 0.35 e Å3
99 restraintsΔρmin = 0.29 e Å3
Crystal data top
C26H27ClN3O3PV = 2519.31 (11) Å3
Mr = 495.93Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2379 (3) ŵ = 0.25 mm1
b = 23.7075 (6) ÅT = 298 K
c = 9.4570 (2) Å0.25 × 0.20 × 0.18 mm
β = 90.809 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4289 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3322 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.957Rint = 0.020
14995 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04599 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.05Δρmax = 0.35 e Å3
4289 reflectionsΔρmin = 0.29 e Å3
346 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2516 (2)0.38895 (10)0.2029 (2)0.0451 (5)
C20.1701 (2)0.41684 (10)0.1112 (2)0.0446 (5)
C30.1721 (2)0.47164 (11)0.1545 (2)0.0493 (6)
H30.12780.50110.11550.059*
C40.2883 (2)0.52521 (10)0.3362 (2)0.0472 (6)
C50.2621 (3)0.57751 (12)0.2825 (3)0.0707 (8)
H50.21540.58080.20100.085*
C60.3046 (3)0.62490 (13)0.3490 (4)0.0801 (10)
H60.28580.66030.31260.096*
C70.3747 (3)0.62076 (13)0.4687 (3)0.0713 (8)
H70.40670.65290.51100.086*
C80.3967 (3)0.56867 (14)0.5246 (3)0.0785 (10)
H80.44200.56560.60730.094*
C90.3528 (3)0.52038 (13)0.4605 (3)0.0686 (8)
H90.36660.48520.50080.082*
C100.2882 (2)0.32923 (11)0.2039 (3)0.0540 (6)
C130.3581 (4)0.21686 (16)0.2042 (5)0.1082 (13)
H130.38180.17930.20480.130*
C110.4035 (4)0.31377 (19)0.2283 (6)0.0841 (14)0.748 (4)
H110.46050.34140.24570.101*0.748 (4)
C120.4372 (5)0.2577 (2)0.2276 (8)0.1102 (19)0.748 (4)
H120.51660.24830.24380.132*0.748 (4)
C140.2368 (5)0.23124 (18)0.1783 (6)0.0879 (14)0.748 (4)
H140.18090.20310.16080.106*0.748 (4)
C150.2025 (4)0.28700 (16)0.1793 (4)0.0658 (11)0.748 (4)
H150.12320.29670.16380.079*0.748 (4)
C11'0.3088 (8)0.2986 (5)0.0798 (12)0.070 (3)0.252 (4)
H11'0.29800.31640.00710.084*0.252 (4)
C12'0.3449 (8)0.2426 (5)0.0829 (16)0.087 (4)0.252 (4)
H12'0.35960.22350.00100.104*0.252 (4)
C14'0.3428 (10)0.2451 (6)0.3322 (18)0.099 (4)0.252 (4)
H14'0.35630.22670.41780.119*0.252 (4)
C15'0.3071 (9)0.3009 (5)0.3293 (13)0.078 (3)0.252 (4)
H15'0.29570.31980.41420.094*0.252 (4)
C160.1013 (2)0.39307 (10)0.0133 (2)0.0470 (6)
H160.13200.35510.03140.056*
C170.0919 (2)0.34143 (10)0.0260 (2)0.0494 (6)
C180.0505 (3)0.30056 (12)0.1201 (3)0.0654 (7)
H180.02520.30430.15750.078*
C190.1197 (3)0.25502 (13)0.1583 (3)0.0782 (9)
H190.08980.22820.22020.094*
C200.2315 (4)0.24868 (15)0.1066 (4)0.0876 (11)
H200.27760.21780.13360.105*
C210.2758 (3)0.28790 (14)0.0146 (4)0.0790 (9)
H210.35210.28390.02080.095*
C220.2059 (2)0.33367 (11)0.0254 (3)0.0577 (7)
C230.0637 (4)0.42448 (19)0.4309 (3)0.1112 (15)
H23A0.02510.46110.43080.133*
H23B0.14440.42970.46370.133*
C240.0018 (4)0.3882 (2)0.5261 (3)0.1217 (17)
H24A0.04760.35450.54040.183*
H24B0.01020.40710.61500.183*
H24C0.07400.37840.48740.183*
C250.3665 (3)0.46024 (16)0.1595 (4)0.0920 (11)
H25A0.39750.47770.24410.110*
H25B0.33810.49000.09820.110*
C260.4602 (3)0.4301 (2)0.0887 (6)0.1312 (18)
H26A0.43250.41670.00090.197*
H26B0.52690.45470.07370.197*
H26C0.48380.39860.14560.197*
Cl10.26240 (7)0.38210 (4)0.14418 (9)0.0802 (3)
N10.24974 (17)0.47557 (8)0.26426 (19)0.0464 (5)
N20.30036 (17)0.42479 (9)0.2952 (2)0.0489 (5)
N30.02512 (18)0.38798 (9)0.0135 (2)0.0533 (5)
H3A0.06020.41530.05590.064*
O10.10231 (18)0.49551 (8)0.15609 (19)0.0643 (5)
O20.06769 (17)0.40281 (8)0.28883 (17)0.0617 (5)
O30.26813 (16)0.42354 (9)0.1981 (2)0.0670 (5)
P10.13347 (6)0.43618 (3)0.16802 (6)0.0497 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0444 (13)0.0487 (14)0.0421 (12)0.0027 (11)0.0041 (10)0.0027 (10)
C20.0463 (13)0.0481 (14)0.0393 (11)0.0002 (11)0.0060 (9)0.0011 (10)
C30.0538 (14)0.0513 (15)0.0422 (12)0.0051 (12)0.0145 (10)0.0016 (11)
C40.0485 (13)0.0519 (15)0.0410 (12)0.0028 (11)0.0057 (10)0.0064 (11)
C50.094 (2)0.0553 (18)0.0615 (16)0.0018 (16)0.0321 (15)0.0019 (14)
C60.108 (3)0.0520 (18)0.080 (2)0.0001 (17)0.0261 (19)0.0025 (15)
C70.077 (2)0.0625 (19)0.0740 (19)0.0005 (16)0.0107 (15)0.0258 (16)
C80.094 (2)0.075 (2)0.0650 (18)0.0122 (18)0.0344 (16)0.0233 (16)
C90.089 (2)0.0608 (18)0.0551 (15)0.0094 (16)0.0290 (14)0.0082 (14)
C100.0607 (16)0.0463 (15)0.0547 (14)0.0004 (12)0.0087 (12)0.0062 (12)
C130.126 (3)0.052 (2)0.146 (4)0.020 (2)0.003 (3)0.012 (2)
C110.074 (3)0.058 (3)0.119 (4)0.006 (2)0.031 (3)0.006 (2)
C120.090 (4)0.069 (3)0.171 (5)0.019 (3)0.033 (4)0.010 (3)
C140.103 (4)0.048 (2)0.113 (4)0.020 (2)0.004 (3)0.008 (2)
C150.067 (2)0.057 (2)0.074 (2)0.0103 (18)0.0015 (19)0.0105 (19)
C11'0.090 (7)0.056 (6)0.063 (6)0.011 (6)0.009 (5)0.004 (5)
C12'0.115 (8)0.057 (7)0.088 (7)0.024 (6)0.009 (7)0.010 (6)
C14'0.134 (9)0.063 (7)0.100 (8)0.044 (7)0.006 (8)0.017 (7)
C15'0.111 (8)0.059 (6)0.064 (6)0.026 (6)0.013 (6)0.002 (5)
C160.0518 (14)0.0464 (14)0.0426 (12)0.0003 (11)0.0083 (10)0.0047 (11)
C170.0626 (15)0.0428 (14)0.0424 (12)0.0087 (12)0.0154 (11)0.0064 (10)
C180.0791 (19)0.0544 (17)0.0624 (16)0.0110 (15)0.0067 (14)0.0093 (14)
C190.112 (3)0.0500 (18)0.0719 (19)0.0144 (18)0.0137 (19)0.0088 (15)
C200.119 (3)0.061 (2)0.082 (2)0.042 (2)0.013 (2)0.0001 (18)
C210.085 (2)0.073 (2)0.079 (2)0.0352 (18)0.0042 (17)0.0125 (18)
C220.0669 (17)0.0539 (16)0.0519 (14)0.0160 (13)0.0095 (12)0.0121 (12)
C230.162 (4)0.125 (3)0.0452 (16)0.055 (3)0.026 (2)0.0146 (18)
C240.128 (3)0.189 (5)0.0480 (18)0.047 (3)0.0108 (19)0.017 (2)
C250.078 (2)0.090 (3)0.108 (3)0.030 (2)0.012 (2)0.015 (2)
C260.060 (2)0.158 (5)0.175 (5)0.002 (3)0.018 (3)0.027 (4)
Cl10.0734 (5)0.0785 (6)0.0892 (5)0.0131 (4)0.0136 (4)0.0062 (4)
N10.0513 (11)0.0467 (12)0.0410 (10)0.0031 (9)0.0103 (8)0.0026 (9)
N20.0524 (12)0.0497 (12)0.0442 (10)0.0010 (10)0.0106 (9)0.0028 (9)
N30.0511 (12)0.0482 (12)0.0604 (12)0.0072 (10)0.0047 (9)0.0126 (10)
O10.0819 (13)0.0511 (11)0.0597 (11)0.0016 (9)0.0099 (9)0.0017 (9)
O20.0740 (12)0.0688 (12)0.0420 (9)0.0130 (10)0.0130 (8)0.0015 (8)
O30.0575 (11)0.0711 (13)0.0722 (12)0.0085 (9)0.0037 (9)0.0109 (10)
P10.0539 (4)0.0516 (4)0.0433 (3)0.0042 (3)0.0092 (3)0.0033 (3)
Geometric parameters (Å, º) top
C1—N21.330 (3)C14'—C15'1.382 (17)
C1—C21.416 (3)C14'—H14'0.9300
C1—C101.474 (3)C15'—H15'0.9300
C2—C31.362 (3)C16—N31.452 (3)
C2—C161.509 (3)C16—P11.825 (2)
C3—N11.350 (3)C16—H160.9800
C3—H30.9300C17—N31.383 (3)
C4—C51.370 (4)C17—C221.389 (4)
C4—C91.377 (3)C17—C181.400 (4)
C4—N11.424 (3)C18—C191.376 (4)
C5—C61.370 (4)C18—H180.9300
C5—H50.9300C19—C201.363 (5)
C6—C71.374 (4)C19—H190.9300
C6—H60.9300C20—C211.372 (5)
C7—C81.364 (4)C20—H200.9300
C7—H70.9300C21—C221.389 (4)
C8—C91.383 (4)C21—H210.9300
C8—H80.9300C22—Cl11.733 (3)
C9—H90.9300C23—C241.421 (5)
C10—C111.363 (5)C23—O21.439 (3)
C10—C15'1.377 (12)C23—H23A0.9700
C10—C11'1.401 (12)C23—H23B0.9700
C10—C151.406 (4)C24—H24A0.9600
C13—C12'1.306 (15)C24—H24B0.9600
C13—C121.331 (7)C24—H24C0.9600
C13—C14'1.396 (17)C25—C261.430 (5)
C13—C141.422 (6)C25—O31.450 (4)
C13—H130.9300C25—H25A0.9700
C11—C121.382 (6)C25—H25B0.9700
C11—H110.9300C26—H26A0.9600
C12—H120.9300C26—H26B0.9600
C14—C151.377 (6)C26—H26C0.9600
C14—H140.9300N1—N21.361 (3)
C15—H150.9300N3—H3A0.8600
C11'—C12'1.388 (17)O1—P11.454 (2)
C11'—H11'0.9300O2—P11.5664 (17)
C12'—H12'0.9300O3—P11.573 (2)
N2—C1—C2111.1 (2)C13—C14'—H14'120.6
N2—C1—C10119.8 (2)C10—C15'—C14'121.7 (12)
C2—C1—C10129.0 (2)C10—C15'—H15'119.1
C3—C2—C1104.7 (2)C14'—C15'—H15'119.1
C3—C2—C16126.6 (2)N3—C16—C2112.74 (19)
C1—C2—C16128.6 (2)N3—C16—P1113.08 (16)
N1—C3—C2107.7 (2)C2—C16—P1108.14 (16)
N1—C3—H3126.1N3—C16—H16107.5
C2—C3—H3126.1C2—C16—H16107.5
C5—C4—C9119.9 (2)P1—C16—H16107.5
C5—C4—N1120.6 (2)N3—C17—C22120.7 (2)
C9—C4—N1119.5 (2)N3—C17—C18122.7 (2)
C4—C5—C6120.0 (3)C22—C17—C18116.5 (2)
C4—C5—H5120.0C19—C18—C17121.3 (3)
C6—C5—H5120.0C19—C18—H18119.4
C5—C6—C7120.8 (3)C17—C18—H18119.4
C5—C6—H6119.6C20—C19—C18120.8 (3)
C7—C6—H6119.6C20—C19—H19119.6
C8—C7—C6118.8 (3)C18—C19—H19119.6
C8—C7—H7120.6C19—C20—C21119.8 (3)
C6—C7—H7120.6C19—C20—H20120.1
C7—C8—C9121.2 (3)C21—C20—H20120.1
C7—C8—H8119.4C20—C21—C22119.6 (3)
C9—C8—H8119.4C20—C21—H21120.2
C4—C9—C8119.0 (3)C22—C21—H21120.2
C4—C9—H9120.5C21—C22—C17122.0 (3)
C8—C9—H9120.5C21—C22—Cl1118.9 (2)
C11—C10—C15'65.7 (5)C17—C22—Cl1119.2 (2)
C11—C10—C11'80.5 (4)C24—C23—O2112.6 (3)
C15'—C10—C11'116.3 (7)C24—C23—H23A109.1
C11—C10—C15118.9 (3)O2—C23—H23A109.1
C15'—C10—C1583.8 (5)C24—C23—H23B109.1
C11'—C10—C1567.3 (4)O2—C23—H23B109.1
C11—C10—C1121.6 (3)H23A—C23—H23B107.8
C15'—C10—C1120.9 (6)C23—C24—H24A109.5
C11'—C10—C1122.8 (5)C23—C24—H24B109.5
C15—C10—C1119.5 (3)H24A—C24—H24B109.5
C12'—C13—C1282.7 (5)C23—C24—H24C109.5
C12'—C13—C14'121.6 (8)H24A—C24—H24C109.5
C12—C13—C14'66.3 (6)H24B—C24—H24C109.5
C12'—C13—C1468.9 (5)C26—C25—O3111.8 (3)
C12—C13—C14119.4 (4)C26—C25—H25A109.3
C14'—C13—C1484.6 (5)O3—C25—H25A109.3
C12'—C13—H13118.8C26—C25—H25B109.3
C12—C13—H13120.3O3—C25—H25B109.3
C14'—C13—H13119.5H25A—C25—H25B107.9
C14—C13—H13120.3C25—C26—H26A109.5
C10—C11—C12121.2 (4)C25—C26—H26B109.5
C10—C11—H11119.4H26A—C26—H26B109.5
C12—C11—H11119.4C25—C26—H26C109.5
C13—C12—C11121.2 (5)H26A—C26—H26C109.5
C13—C12—H12119.4H26B—C26—H26C109.5
C11—C12—H12119.4C3—N1—N2111.57 (19)
C15—C14—C13119.8 (4)C3—N1—C4127.9 (2)
C15—C14—H14120.1N2—N1—C4120.33 (18)
C13—C14—H14120.1C1—N2—N1104.91 (18)
C14—C15—C10119.5 (4)C17—N3—C16123.2 (2)
C14—C15—H15120.2C17—N3—H3A118.4
C10—C15—H15120.2C16—N3—H3A118.4
C12'—C11'—C10122.0 (11)C23—O2—P1120.6 (2)
C12'—C11'—H11'119.0C25—O3—P1124.9 (2)
C10—C11'—H11'119.0O1—P1—O2115.68 (11)
C13—C12'—C11'119.7 (12)O1—P1—O3115.58 (12)
C13—C12'—H12'120.2O2—P1—O3102.56 (11)
C11'—C12'—H12'120.2O1—P1—C16115.40 (11)
C15'—C14'—C13118.7 (12)O2—P1—C16101.83 (10)
C15'—C14'—H14'120.6O3—P1—C16103.89 (11)
N2—C1—C2—C30.4 (3)C11—C10—C15'—C14'65.7 (6)
C10—C1—C2—C3178.4 (2)C11'—C10—C15'—C14'0.9 (6)
N2—C1—C2—C16176.0 (2)C15—C10—C15'—C14'59.9 (6)
C10—C1—C2—C162.0 (4)C1—C10—C15'—C14'179.3 (5)
C1—C2—C3—N10.1 (3)C13—C14'—C15'—C100.9 (9)
C16—C2—C3—N1176.4 (2)C3—C2—C16—N374.9 (3)
C9—C4—C5—C63.0 (5)C1—C2—C16—N3109.4 (3)
N1—C4—C5—C6176.8 (3)C3—C2—C16—P150.8 (3)
C4—C5—C6—C70.7 (5)C1—C2—C16—P1124.8 (2)
C5—C6—C7—C83.2 (5)N3—C17—C18—C19179.3 (3)
C6—C7—C8—C92.0 (5)C22—C17—C18—C190.4 (4)
C5—C4—C9—C84.1 (5)C17—C18—C19—C200.7 (5)
N1—C4—C9—C8175.7 (3)C18—C19—C20—C210.4 (5)
C7—C8—C9—C41.6 (5)C19—C20—C21—C220.2 (5)
N2—C1—C10—C1138.1 (4)C20—C21—C22—C170.5 (5)
C2—C1—C10—C11139.7 (4)C20—C21—C22—Cl1178.9 (3)
N2—C1—C10—C15'40.6 (5)N3—C17—C22—C21178.7 (2)
C2—C1—C10—C15'141.6 (5)C18—C17—C22—C210.2 (4)
N2—C1—C10—C11'137.6 (4)N3—C17—C22—Cl11.9 (3)
C2—C1—C10—C11'40.2 (5)C18—C17—C22—Cl1179.18 (19)
N2—C1—C10—C15141.8 (3)C2—C3—N1—N20.3 (3)
C2—C1—C10—C1540.4 (4)C2—C3—N1—C4174.4 (2)
C15'—C10—C11—C1268.1 (8)C5—C4—N1—C310.9 (4)
C11'—C10—C11—C1256.6 (7)C9—C4—N1—C3169.3 (3)
C15—C10—C11—C120.7 (7)C5—C4—N1—N2162.8 (3)
C1—C10—C11—C12179.4 (5)C9—C4—N1—N217.0 (4)
C12'—C13—C12—C1161.3 (8)C2—C1—N2—N10.6 (3)
C14'—C13—C12—C1168.0 (8)C10—C1—N2—N1178.8 (2)
C14—C13—C12—C110.5 (10)C3—N1—N2—C10.6 (3)
C10—C11—C12—C130.5 (10)C4—N1—N2—C1175.2 (2)
C12'—C13—C14—C1568.8 (8)C22—C17—N3—C16167.5 (2)
C12—C13—C14—C150.7 (8)C18—C17—N3—C1613.7 (4)
C14'—C13—C14—C1558.1 (7)C2—C16—N3—C17137.3 (2)
C13—C14—C15—C100.9 (7)P1—C16—N3—C1799.7 (2)
C11—C10—C15—C140.9 (6)C24—C23—O2—P1179.2 (3)
C15'—C10—C15—C1458.7 (6)C26—C25—O3—P1131.2 (3)
C11'—C10—C15—C1463.2 (6)C23—O2—P1—O150.1 (3)
C1—C10—C15—C14179.2 (3)C23—O2—P1—O376.7 (3)
C11—C10—C11'—C12'57.5 (3)C23—O2—P1—C16176.0 (3)
C15'—C10—C11'—C12'0.8 (3)C25—O3—P1—O126.1 (3)
C15—C10—C11'—C12'69.5 (4)C25—O3—P1—O2152.9 (2)
C1—C10—C11'—C12'179.1 (3)C25—O3—P1—C16101.3 (2)
C12—C13—C12'—C11'59.7 (4)N3—C16—P1—O165.96 (19)
C14'—C13—C12'—C11'3.4 (6)C2—C16—P1—O159.6 (2)
C14—C13—C12'—C11'65.7 (4)N3—C16—P1—O260.18 (19)
C10—C11'—C12'—C131.4 (3)C2—C16—P1—O2174.24 (16)
C12'—C13—C14'—C15'3.2 (9)N3—C16—P1—O3166.47 (16)
C12—C13—C14'—C15'67.5 (6)C2—C16—P1—O367.95 (18)
C14—C13—C14'—C15'57.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.862.373.199 (3)163
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC26H27ClN3O3P
Mr495.93
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.2379 (3), 23.7075 (6), 9.4570 (2)
β (°) 90.809 (1)
V3)2519.31 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.941, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
14995, 4289, 3322
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.135, 1.05
No. of reflections4289
No. of parameters346
No. of restraints99
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.29

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.862.373.199 (3)162.6
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

GS and SA thank the UGC, India, for financial support. GS thanks the SAIF, IIT-Madras, for the instrumentation facility.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationPatel, C. K., Rami, C. S., Panigrahi, B. & Patel, C. N. (2010). J. Chem. Pharm. Res. 2, 73–78.  CAS
First citationSaeed, A., Hussain, S. & Bolte, M. (2009). Acta Cryst. E65, o1231.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationSullivan, T. J., Truglio, J. J., Boyne, M. E., Novichenok, P., Zhang, X., Stratton, C. F., Li, H.-J., Kaur, T., Amin, A., Johnson, F., Slayden, R. A., Kisker, C. & Tonge, P. J. (2006). ACS Chem. Biol. 1, 43–53.  Web of Science CrossRef PubMed CAS
First citationSuresh, G., Sabari, V., Nandakumar, A., Perumal, P. T. & Aravindhan, S. (2012). Acta Cryst. E68, o1554.  CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds