metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages m103-m104

Hexa­aqua­cobalt(II) 2,2′-[naphthalene-1,8-diylbis(­­oxy)]di­acetate dihydrate

aDepartment of Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People's Republic of China
*Correspondence e-mail: shishipiaoliang@126.com

(Received 19 December 2012; accepted 7 January 2013; online 12 January 2013)

In the title compound, [Co(H2O)6](C14H10O6)·2H2O, the 2,2′-[naphthalene-1,8-diylbis(­oxy)]diacetate dianion L is not coordinated to the CoII ion. The asymmetric unit contains half of the L dianion, half of a [Co(H2O)6]2+ cation (both molecules being completed by inversion symmetry), and one water mol­ecule. The crystal packing features O—H⋯O hydrogen bonding between the carboxyl­ate groups, the aqua ligands and the hydrate water mol­ecules.

Related literature

In recent years, metal complexes have been synthezised with potential applications in mol­ecular sorption, electrical conductivity, catalysis, magnetism, non-linear optics and mol­ecular sensing, see: James (2003[James, S. L. (2003). Chem. Soc. Rev. 32, 276-288.]); Murray et al. (2009[Murray, L. J., Dinca, M. & Long, J. R. (2009). Chem. Soc. Rev. 38, 1294-1314.]); Karmakar et al. (2009[Karmakar, A., Baruah, J. B. & Shankar, B. (2009). CrystEngComm, 11, 832-840.]); Kurmoo (2009[Kurmoo, M. (2009). Chem. Soc. Rev. 38, 1353-1379.]); Bradshaw et al. (2005[Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273-282.]). The 5-carboxymethoxy-naphtalene1-yl(oxy)-acetate ligand can provide a dominant packing feature and it often controls the supra­molecular assembly, see: Desiraju (2007[Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342-8356.]). For Cd complexes with different co-ligands, see: Deka et al. (2011[Deka, H., Sarma, R., Kumari, S., Khare, A. & Baruah, J. B. (2011). J. Solid State Chem. 184, 1726-1734.]); Li et al. (2012[Li, L., Song, Y. L., Hou, H. W., Liu, Z. S., Yuan, G. & Su, Z. M. (2012). Inorg. Chem. Commun. 15, 289-291.]) and for Zn complexes, see: Mondal et al. (2008[Mondal, P., Karmakar, A. J., Singh, M. W. & Baruah, J. B. (2008). CrystEngComm, 10, 1159-1550.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(H2O)6](C14H10O6)·2H2O

  • Mr = 477.28

  • Triclinic, [P \overline 1]

  • a = 6.377 (2) Å

  • b = 6.642 (2) Å

  • c = 12.979 (5) Å

  • α = 79.669 (10)°

  • β = 79.963 (11)°

  • γ = 64.911 (8)°

  • V = 486.8 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 293 K

  • 0.30 × 0.28 × 0.25 mm

Data collection
  • Siemens CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.731, Tmax = 1.000

  • 3126 measured reflections

  • 1678 independent reflections

  • 1605 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.080

  • S = 1.09

  • 1678 reflections

  • 161 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O4 2.056 (2)
Co1—O5 2.0792 (17)
Co1—O6 2.093 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6C⋯O7i 0.96 (2) 1.76 (3) 2.723 (3) 174 (3)
O6—H6D⋯O7ii 0.93 (2) 1.83 (3) 2.751 (3) 171 (3)
O5—H5A⋯O2iii 0.93 (3) 1.96 (3) 2.850 (3) 159 (2)
O5—H5B⋯O3iv 0.94 (3) 1.87 (2) 2.783 (3) 165 (2)
O7—H7A⋯O3v 0.92 (2) 1.82 (3) 2.736 (3) 171 (3)
O7—H7B⋯O2vi 0.93 (3) 1.89 (3) 2.780 (3) 158 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z-1; (iii) x-1, y, z; (iv) x-1, y-1, z; (v) -x+2, -y+2, -z+1; (vi) -x+1, -y+2, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, metal complexes have been synthezised with potential applications in molecular sorption, electrical conductivity, catalysis, magnetism, nonlinear optics, and molecular sensing (James, 2003; Murray et al., 2009; Kurmoo, 2009; Karmakar et al., 2009; Bradshaw et al., 2005). The LH2 ligand (5-carboxymethoxy-naphtalen-1-yloxy)-acetic acid) has received our attention because it can provide a dominant packing feature and it often controls the supramolecular assembly (Desiraju et al., 2007). At present, many of its metal complexes have already been reported, but most are focused on Cd complexes (Deka et al., 2011; Li et al., 2012) and Zn complexes (Li et al., 2012) with different co-ligands such as 2,2-bipyridine or 1,10-phenanthroline (phen). In the present paper, we hydrothermally synthesized a novel coordination complex constructed by CoII, L and water molecules and determined its crystal structure (Fig. 1).

The asymmetric unit of the complex consists of a half ligand L, a half CoII ion complexed with three water molecules and one additional water molecule. The CoII center is octahedrally coordinated by six water molecules. The two carboxylate arms of the LH2 ligand lie in the same plane as the naphthalene ring. The hydrogen atoms of the water molecular and the oxygen atoms which are coordinated by CoII are involved in hydrogen bonding with the oxygen atoms of the carboxylate group (Table 2, Fig. 2). In this case a sheet-like structure is formed.

Related literature top

In recent years, metal complexes have been synthezised with potential applications in molecular sorption, electrical conductivity, catalysis, magnetism, non-linear optics and molecular sensing, see: James (2003); Murray et al. (2009); Karmakar et al. (2009); Kurmoo (2009); Bradshaw et al. (2005). The 5-carboxymethoxy-naphtalen-1-yloxy)-acetic acid ligand can provide a dominant packing feature and it often controls the supramolecular assembly, see: Desiraju (2007). For Cd complexes with different co-ligands, see: Deka et al. (2011); Li et al. (2012) and for Zn complexes, see: Mondal et al. (2008);

Experimental top

The ligand LH2 was synthesized according to the procedure published by Mondal et al. (2008).

A mixture of Co(NO3)2.6H2O (0.05 mmol, 0.015 g), L (0.05 mmol, 0.013 g), water (1 ml) and DMF (1 ml) was heated at 393 K in a Teflon-lined autoclave for three days, followed by slow cooling to room temperature. The resulting pink block crystals were filtered off and washed with distilled water.

Refinement top

The H atoms on the ligands were positioned geometrically and refined as riding [C–H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. Hydrogen atoms of the water molecules were located in the Fourier difference maps and refined with restraints for the O–H distances and H–O–H angles.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atomic numbering scheme and displacement ellipsoids at the 50% probability level (H atoms omitted for clarity) [symmetry codes: (A) -x + 1, -y + 1, -z + 1, (B) -x, -y + 1, -z.].
[Figure 2] Fig. 2. Three dimensional supramolecular architecture constructed by intermolecular hydrogen bonds. The dotted lines indicate the hydrogen bonds.
Hexaaquacobalt(II) 2,2'-[naphthalene-1,8-diylbis(oxy)]diacetate dihydrate top
Crystal data top
[Co(H2O)6](C14H10O6)·2H2OZ = 1
Mr = 477.28F(000) = 249
Triclinic, P1Dx = 1.628 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.377 (2) ÅCell parameters from 1414 reflections
b = 6.642 (2) Åθ = 3.2–27.5°
c = 12.979 (5) ŵ = 0.95 mm1
α = 79.669 (10)°T = 293 K
β = 79.963 (11)°Block, pink
γ = 64.911 (8)°0.30 × 0.28 × 0.25 mm
V = 486.8 (3) Å3
Data collection top
Siemens CCD area-detector
diffractometer
1678 independent reflections
Radiation source: fine-focus sealed tube1605 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.0°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 77
Tmin = 0.731, Tmax = 1.000k = 77
3126 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.1833P]
where P = (Fo2 + 2Fc2)/3
1678 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 0.37 e Å3
12 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Co(H2O)6](C14H10O6)·2H2Oγ = 64.911 (8)°
Mr = 477.28V = 486.8 (3) Å3
Triclinic, P1Z = 1
a = 6.377 (2) ÅMo Kα radiation
b = 6.642 (2) ŵ = 0.95 mm1
c = 12.979 (5) ÅT = 293 K
α = 79.669 (10)°0.30 × 0.28 × 0.25 mm
β = 79.963 (11)°
Data collection top
Siemens CCD area-detector
diffractometer
1678 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1605 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 1.000Rint = 0.018
3126 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03112 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.37 e Å3
1678 reflectionsΔρmin = 0.48 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7658 (2)0.7636 (3)0.38143 (11)0.0299 (3)
O20.9252 (3)0.9376 (3)0.20485 (12)0.0374 (4)
O31.0787 (3)1.1022 (3)0.28675 (12)0.0331 (4)
C50.5504 (3)0.5494 (3)0.45495 (15)0.0222 (4)
C40.6759 (3)0.6729 (3)0.47211 (15)0.0239 (4)
C30.6996 (3)0.6953 (3)0.57172 (16)0.0275 (4)
H30.78260.77520.58160.033*
C20.5966 (3)0.5961 (4)0.65934 (16)0.0282 (4)
H20.61150.61310.72690.034*
C10.4761 (3)0.4762 (3)0.64724 (15)0.0257 (4)
H10.41130.41110.70620.031*
C60.8919 (3)0.8899 (3)0.39326 (15)0.0254 (4)
H6A1.02620.79480.43040.031*
H6B0.79331.01180.43430.031*
C70.9709 (3)0.9827 (3)0.28607 (16)0.0255 (4)
Co10.00000.50000.00000.03054 (16)
O70.5069 (3)1.0109 (3)0.83972 (12)0.0387 (4)
O50.0045 (3)0.5054 (3)0.15926 (12)0.0407 (4)
O60.3582 (3)0.3007 (3)0.00989 (14)0.0504 (5)
H6C0.403 (6)0.199 (5)0.0532 (16)0.075 (10)*
H6D0.411 (6)0.214 (5)0.0654 (18)0.087 (12)*
H5A0.021 (6)0.630 (4)0.191 (2)0.076 (10)*
H5B0.013 (5)0.385 (4)0.211 (2)0.067 (9)*
H7A0.638 (3)0.982 (5)0.7915 (19)0.062 (9)*
H7B0.380 (4)1.029 (6)0.807 (2)0.085 (11)*
O40.0880 (5)0.7707 (3)0.03180 (15)0.0629 (6)
H4A0.20600.74190.07380.094*
H4B0.043 (5)0.897 (9)0.061 (4)0.27 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0387 (8)0.0372 (9)0.0246 (7)0.0275 (7)0.0017 (6)0.0010 (6)
O20.0532 (9)0.0444 (10)0.0277 (8)0.0338 (8)0.0041 (7)0.0010 (7)
O30.0386 (8)0.0346 (9)0.0351 (8)0.0253 (7)0.0006 (6)0.0033 (6)
C50.0206 (8)0.0211 (10)0.0238 (9)0.0079 (7)0.0025 (7)0.0012 (7)
C40.0240 (9)0.0241 (10)0.0250 (10)0.0128 (8)0.0005 (7)0.0005 (8)
C30.0293 (10)0.0295 (11)0.0299 (11)0.0170 (8)0.0041 (8)0.0044 (8)
C20.0337 (10)0.0323 (11)0.0223 (10)0.0157 (9)0.0039 (8)0.0049 (8)
C10.0270 (9)0.0288 (11)0.0229 (10)0.0143 (8)0.0006 (7)0.0014 (8)
C60.0285 (9)0.0254 (10)0.0274 (10)0.0160 (8)0.0027 (8)0.0027 (8)
C70.0260 (9)0.0231 (10)0.0284 (11)0.0117 (8)0.0013 (8)0.0023 (8)
Co10.0457 (3)0.0224 (2)0.0229 (2)0.01429 (18)0.00138 (17)0.00230 (16)
O70.0332 (8)0.0466 (10)0.0329 (9)0.0127 (7)0.0026 (7)0.0068 (7)
O50.0655 (11)0.0304 (9)0.0257 (8)0.0194 (8)0.0046 (7)0.0026 (7)
O60.0605 (11)0.0451 (11)0.0359 (10)0.0118 (9)0.0026 (8)0.0085 (8)
O40.1209 (18)0.0469 (12)0.0407 (10)0.0550 (13)0.0101 (11)0.0015 (9)
Geometric parameters (Å, º) top
O1—C41.371 (2)C6—H6B0.9700
O1—C61.427 (2)Co1—O42.056 (2)
O2—C71.257 (3)Co1—O4ii2.056 (2)
O3—C71.253 (3)Co1—O5ii2.0792 (17)
C5—C1i1.414 (3)Co1—O52.0792 (17)
C5—C5i1.425 (4)Co1—O62.093 (2)
C5—C41.431 (3)Co1—O6ii2.093 (2)
C4—C31.368 (3)O7—H7A0.921 (17)
C3—C21.413 (3)O7—H7B0.932 (17)
C3—H30.9300O5—H5A0.931 (17)
C2—C11.362 (3)O5—H5B0.933 (17)
C2—H20.9300O6—H6C0.962 (17)
C1—C5i1.414 (3)O6—H6D0.929 (18)
C1—H10.9300O4—H4A0.8200
C6—C71.510 (3)O4—H4B0.97 (2)
C6—H6A0.9700
C4—O1—C6116.91 (15)O4—Co1—O4ii180.0
C1i—C5—C5i119.8 (2)O4—Co1—O5ii91.63 (7)
C1i—C5—C4122.26 (18)O4ii—Co1—O5ii88.37 (7)
C5i—C5—C4117.9 (2)O4—Co1—O588.37 (7)
C3—C4—O1124.53 (18)O4ii—Co1—O591.63 (7)
C3—C4—C5121.27 (18)O5ii—Co1—O5180.00 (11)
O1—C4—C5114.19 (17)O4—Co1—O686.53 (10)
C4—C3—C2119.38 (19)O4ii—Co1—O693.47 (10)
C4—C3—H3120.3O5ii—Co1—O691.34 (7)
C2—C3—H3120.3O5—Co1—O688.66 (7)
C1—C2—C3121.62 (18)O4—Co1—O6ii93.47 (10)
C1—C2—H2119.2O4ii—Co1—O6ii86.53 (10)
C3—C2—H2119.2O5ii—Co1—O6ii88.66 (7)
C2—C1—C5i119.98 (18)O5—Co1—O6ii91.34 (7)
C2—C1—H1120.0O6—Co1—O6ii180.00 (7)
C5i—C1—H1120.0H7A—O7—H7B110 (2)
O1—C6—C7109.63 (16)Co1—O5—H5A126.3 (19)
O1—C6—H6A109.7Co1—O5—H5B123.8 (18)
C7—C6—H6A109.7H5A—O5—H5B109 (2)
O1—C6—H6B109.7Co1—O6—H6C112.4 (19)
C7—C6—H6B109.7Co1—O6—H6D113 (2)
H6A—C6—H6B108.2H6C—O6—H6D107 (2)
O3—C7—O2125.29 (19)Co1—O4—H4A109.5
O3—C7—C6115.32 (17)Co1—O4—H4B107 (4)
O2—C7—C6119.39 (18)H4A—O4—H4B111.3
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6C···O7i0.96 (2)1.76 (3)2.723 (3)174 (3)
O6—H6D···O7iii0.93 (2)1.83 (3)2.751 (3)171 (3)
O5—H5A···O2iv0.93 (3)1.96 (3)2.850 (3)159 (2)
O5—H5B···O3v0.94 (3)1.87 (2)2.783 (3)165 (2)
O7—H7A···O3vi0.92 (2)1.82 (3)2.736 (3)171 (3)
O7—H7B···O2vii0.93 (3)1.89 (3)2.780 (3)158 (2)
Symmetry codes: (i) x+1, y+1, z+1; (iii) x, y1, z1; (iv) x1, y, z; (v) x1, y1, z; (vi) x+2, y+2, z+1; (vii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Co(H2O)6](C14H10O6)·2H2O
Mr477.28
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.377 (2), 6.642 (2), 12.979 (5)
α, β, γ (°)79.669 (10), 79.963 (11), 64.911 (8)
V3)486.8 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.30 × 0.28 × 0.25
Data collection
DiffractometerSiemens CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.731, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3126, 1678, 1605
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 1.09
No. of reflections1678
No. of parameters161
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.48

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O42.056 (2)Co1—O62.093 (2)
Co1—O52.0792 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6C···O7i0.96 (2)1.76 (3)2.723 (3)174 (3)
O6—H6D···O7ii0.93 (2)1.83 (3)2.751 (3)171 (3)
O5—H5A···O2iii0.93 (3)1.96 (3)2.850 (3)159 (2)
O5—H5B···O3iv0.94 (3)1.87 (2)2.783 (3)165 (2)
O7—H7A···O3v0.92 (2)1.82 (3)2.736 (3)171 (3)
O7—H7B···O2vi0.93 (3)1.89 (3)2.780 (3)158 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z1; (iii) x1, y, z; (iv) x1, y1, z; (v) x+2, y+2, z+1; (vi) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (No. CQDXWL-2012–024).

References

First citationBradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273–282.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDeka, H., Sarma, R., Kumari, S., Khare, A. & Baruah, J. B. (2011). J. Solid State Chem. 184, 1726–1734.  Web of Science CSD CrossRef CAS Google Scholar
First citationDesiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342–8356.  Web of Science CrossRef CAS Google Scholar
First citationJames, S. L. (2003). Chem. Soc. Rev. 32, 276–288.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKarmakar, A., Baruah, J. B. & Shankar, B. (2009). CrystEngComm, 11, 832–840.  Web of Science CSD CrossRef CAS Google Scholar
First citationKurmoo, M. (2009). Chem. Soc. Rev. 38, 1353–1379.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, L., Song, Y. L., Hou, H. W., Liu, Z. S., Yuan, G. & Su, Z. M. (2012). Inorg. Chem. Commun. 15, 289–291.  Google Scholar
First citationMondal, P., Karmakar, A. J., Singh, M. W. & Baruah, J. B. (2008). CrystEngComm, 10, 1159–1550.  Google Scholar
First citationMurray, L. J., Dinca, M. & Long, J. R. (2009). Chem. Soc. Rev. 38, 1294–1314.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages m103-m104
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds