supplementary materials


vm2185 scheme

Acta Cryst. (2013). E69, m103-m104    [ doi:10.1107/S1600536813000512 ]

Hexaaquacobalt(II) 2,2'-[naphthalene-1,8-diylbis(oxy)]diacetate dihydrate

H. F. Shi, T. Wu, P. G. Jiang, Z. Hao and M. M. Zhang

Abstract top

In the title compound, [Co(H2O)6](C14H10O6)·2H2O, the 2,2'-[naphthalene-1,8-diylbis(oxy)]diacetate dianion L is not coordinated to the CoII ion. The asymmetric unit contains half of the L dianion, half of a [Co(H2O)6]2+ cation (both molecules being completed by inversion symmetry), and one water molecule. The crystal packing features O-H...O hydrogen bonding between the carboxylate groups, the aqua ligands and the hydrate water molecules.

Comment top

In recent years, metal complexes have been synthezised with potential applications in molecular sorption, electrical conductivity, catalysis, magnetism, nonlinear optics, and molecular sensing (James, 2003; Murray et al., 2009; Kurmoo, 2009; Karmakar et al., 2009; Bradshaw et al., 2005). The LH2 ligand (5-carboxymethoxy-naphtalen-1-yloxy)-acetic acid) has received our attention because it can provide a dominant packing feature and it often controls the supramolecular assembly (Desiraju et al., 2007). At present, many of its metal complexes have already been reported, but most are focused on Cd complexes (Deka et al., 2011; Li et al., 2012) and Zn complexes (Li et al., 2012) with different co-ligands such as 2,2-bipyridine or 1,10-phenanthroline (phen). In the present paper, we hydrothermally synthesized a novel coordination complex constructed by CoII, L and water molecules and determined its crystal structure (Fig. 1).

The asymmetric unit of the complex consists of a half ligand L, a half CoII ion complexed with three water molecules and one additional water molecule. The CoII center is octahedrally coordinated by six water molecules. The two carboxylate arms of the LH2 ligand lie in the same plane as the naphthalene ring. The hydrogen atoms of the water molecular and the oxygen atoms which are coordinated by CoII are involved in hydrogen bonding with the oxygen atoms of the carboxylate group (Table 2, Fig. 2). In this case a sheet-like structure is formed.

Related literature top

In recent years, metal complexes have been synthezised with potential applications in molecular sorption, electrical conductivity, catalysis, magnetism, non-linear optics and molecular sensing, see: James (2003); Murray et al. (2009); Karmakar et al. (2009); Kurmoo (2009); Bradshaw et al. (2005). The 5-carboxymethoxy-naphtalen-1-yloxy)-acetic acid ligand can provide a dominant packing feature and it often controls the supramolecular assembly, see: Desiraju (2007). For Cd complexes with different co-ligands, see: Deka et al. (2011); Li et al. (2012) and for Zn complexes, see: Mondal et al. (2008);

Experimental top

The ligand LH2 was synthesized according to the procedure published by Mondal et al. (2008).

A mixture of Co(NO3)2.6H2O (0.05 mmol, 0.015 g), L (0.05 mmol, 0.013 g), water (1 ml) and DMF (1 ml) was heated at 393 K in a Teflon-lined autoclave for three days, followed by slow cooling to room temperature. The resulting pink block crystals were filtered off and washed with distilled water.

Refinement top

The H atoms on the ligands were positioned geometrically and refined as riding [C–H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. Hydrogen atoms of the water molecules were located in the Fourier difference maps and refined with restraints for the O–H distances and H–O–H angles.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atomic numbering scheme and displacement ellipsoids at the 50% probability level (H atoms omitted for clarity) [symmetry codes: (A) -x + 1, -y + 1, -z + 1, (B) -x, -y + 1, -z.].
[Figure 2] Fig. 2. Three dimensional supramolecular architecture constructed by intermolecular hydrogen bonds. The dotted lines indicate the hydrogen bonds.
Hexaaquacobalt(II) 2,2'-[naphthalene-1,8-diylbis(oxy)]diacetate dihydrate top
Crystal data top
[Co(H2O)6](C14H10O6)·2H2OZ = 1
Mr = 477.28F(000) = 249
Triclinic, P1Dx = 1.628 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.377 (2) ÅCell parameters from 1414 reflections
b = 6.642 (2) Åθ = 3.2–27.5°
c = 12.979 (5) ŵ = 0.95 mm1
α = 79.669 (10)°T = 293 K
β = 79.963 (11)°Block, pink
γ = 64.911 (8)°0.30 × 0.28 × 0.25 mm
V = 486.8 (3) Å3
Data collection top
Siemens CCD area-detector
diffractometer
1678 independent reflections
Radiation source: fine-focus sealed tube1605 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 25.0°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 77
Tmin = 0.731, Tmax = 1.000k = 77
3126 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.1833P]
where P = (Fo2 + 2Fc2)/3
1678 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 0.37 e Å3
12 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Co(H2O)6](C14H10O6)·2H2Oγ = 64.911 (8)°
Mr = 477.28V = 486.8 (3) Å3
Triclinic, P1Z = 1
a = 6.377 (2) ÅMo Kα radiation
b = 6.642 (2) ŵ = 0.95 mm1
c = 12.979 (5) ÅT = 293 K
α = 79.669 (10)°0.30 × 0.28 × 0.25 mm
β = 79.963 (11)°
Data collection top
Siemens CCD area-detector
diffractometer
1678 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1605 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 1.000Rint = 0.018
3126 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080Δρmax = 0.37 e Å3
S = 1.09Δρmin = 0.48 e Å3
1678 reflectionsAbsolute structure: ?
161 parametersFlack parameter: ?
12 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7658 (2)0.7636 (3)0.38143 (11)0.0299 (3)
O20.9252 (3)0.9376 (3)0.20485 (12)0.0374 (4)
O31.0787 (3)1.1022 (3)0.28675 (12)0.0331 (4)
C50.5504 (3)0.5494 (3)0.45495 (15)0.0222 (4)
C40.6759 (3)0.6729 (3)0.47211 (15)0.0239 (4)
C30.6996 (3)0.6953 (3)0.57172 (16)0.0275 (4)
H30.78260.77520.58160.033*
C20.5966 (3)0.5961 (4)0.65934 (16)0.0282 (4)
H20.61150.61310.72690.034*
C10.4761 (3)0.4762 (3)0.64724 (15)0.0257 (4)
H10.41130.41110.70620.031*
C60.8919 (3)0.8899 (3)0.39326 (15)0.0254 (4)
H6A1.02620.79480.43040.031*
H6B0.79331.01180.43430.031*
C70.9709 (3)0.9827 (3)0.28607 (16)0.0255 (4)
Co10.00000.50000.00000.03054 (16)
O70.5069 (3)1.0109 (3)0.83972 (12)0.0387 (4)
O50.0045 (3)0.5054 (3)0.15926 (12)0.0407 (4)
O60.3582 (3)0.3007 (3)0.00989 (14)0.0504 (5)
H6C0.403 (6)0.199 (5)0.0532 (16)0.075 (10)*
H6D0.411 (6)0.214 (5)0.0654 (18)0.087 (12)*
H5A0.021 (6)0.630 (4)0.191 (2)0.076 (10)*
H5B0.013 (5)0.385 (4)0.211 (2)0.067 (9)*
H7A0.638 (3)0.982 (5)0.7915 (19)0.062 (9)*
H7B0.380 (4)1.029 (6)0.807 (2)0.085 (11)*
O40.0880 (5)0.7707 (3)0.03180 (15)0.0629 (6)
H4A0.20600.74190.07380.094*
H4B0.043 (5)0.897 (9)0.061 (4)0.27 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0387 (8)0.0372 (9)0.0246 (7)0.0275 (7)0.0017 (6)0.0010 (6)
O20.0532 (9)0.0444 (10)0.0277 (8)0.0338 (8)0.0041 (7)0.0010 (7)
O30.0386 (8)0.0346 (9)0.0351 (8)0.0253 (7)0.0006 (6)0.0033 (6)
C50.0206 (8)0.0211 (10)0.0238 (9)0.0079 (7)0.0025 (7)0.0012 (7)
C40.0240 (9)0.0241 (10)0.0250 (10)0.0128 (8)0.0005 (7)0.0005 (8)
C30.0293 (10)0.0295 (11)0.0299 (11)0.0170 (8)0.0041 (8)0.0044 (8)
C20.0337 (10)0.0323 (11)0.0223 (10)0.0157 (9)0.0039 (8)0.0049 (8)
C10.0270 (9)0.0288 (11)0.0229 (10)0.0143 (8)0.0006 (7)0.0014 (8)
C60.0285 (9)0.0254 (10)0.0274 (10)0.0160 (8)0.0027 (8)0.0027 (8)
C70.0260 (9)0.0231 (10)0.0284 (11)0.0117 (8)0.0013 (8)0.0023 (8)
Co10.0457 (3)0.0224 (2)0.0229 (2)0.01429 (18)0.00138 (17)0.00230 (16)
O70.0332 (8)0.0466 (10)0.0329 (9)0.0127 (7)0.0026 (7)0.0068 (7)
O50.0655 (11)0.0304 (9)0.0257 (8)0.0194 (8)0.0046 (7)0.0026 (7)
O60.0605 (11)0.0451 (11)0.0359 (10)0.0118 (9)0.0026 (8)0.0085 (8)
O40.1209 (18)0.0469 (12)0.0407 (10)0.0550 (13)0.0101 (11)0.0015 (9)
Geometric parameters (Å, º) top
O1—C41.371 (2)C6—H6B0.9700
O1—C61.427 (2)Co1—O42.056 (2)
O2—C71.257 (3)Co1—O4ii2.056 (2)
O3—C71.253 (3)Co1—O5ii2.0792 (17)
C5—C1i1.414 (3)Co1—O52.0792 (17)
C5—C5i1.425 (4)Co1—O62.093 (2)
C5—C41.431 (3)Co1—O6ii2.093 (2)
C4—C31.368 (3)O7—H7A0.921 (17)
C3—C21.413 (3)O7—H7B0.932 (17)
C3—H30.9300O5—H5A0.931 (17)
C2—C11.362 (3)O5—H5B0.933 (17)
C2—H20.9300O6—H6C0.962 (17)
C1—C5i1.414 (3)O6—H6D0.929 (18)
C1—H10.9300O4—H4A0.8200
C6—C71.510 (3)O4—H4B0.97 (2)
C6—H6A0.9700
C4—O1—C6116.91 (15)O4—Co1—O4ii180.0
C1i—C5—C5i119.8 (2)O4—Co1—O5ii91.63 (7)
C1i—C5—C4122.26 (18)O4ii—Co1—O5ii88.37 (7)
C5i—C5—C4117.9 (2)O4—Co1—O588.37 (7)
C3—C4—O1124.53 (18)O4ii—Co1—O591.63 (7)
C3—C4—C5121.27 (18)O5ii—Co1—O5180.00 (11)
O1—C4—C5114.19 (17)O4—Co1—O686.53 (10)
C4—C3—C2119.38 (19)O4ii—Co1—O693.47 (10)
C4—C3—H3120.3O5ii—Co1—O691.34 (7)
C2—C3—H3120.3O5—Co1—O688.66 (7)
C1—C2—C3121.62 (18)O4—Co1—O6ii93.47 (10)
C1—C2—H2119.2O4ii—Co1—O6ii86.53 (10)
C3—C2—H2119.2O5ii—Co1—O6ii88.66 (7)
C2—C1—C5i119.98 (18)O5—Co1—O6ii91.34 (7)
C2—C1—H1120.0O6—Co1—O6ii180.00 (7)
C5i—C1—H1120.0H7A—O7—H7B110 (2)
O1—C6—C7109.63 (16)Co1—O5—H5A126.3 (19)
O1—C6—H6A109.7Co1—O5—H5B123.8 (18)
C7—C6—H6A109.7H5A—O5—H5B109 (2)
O1—C6—H6B109.7Co1—O6—H6C112.4 (19)
C7—C6—H6B109.7Co1—O6—H6D113 (2)
H6A—C6—H6B108.2H6C—O6—H6D107 (2)
O3—C7—O2125.29 (19)Co1—O4—H4A109.5
O3—C7—C6115.32 (17)Co1—O4—H4B107 (4)
O2—C7—C6119.39 (18)H4A—O4—H4B111.3
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6C···O7i0.96 (2)1.76 (3)2.723 (3)174 (3)
O6—H6D···O7iii0.93 (2)1.83 (3)2.751 (3)171 (3)
O5—H5A···O2iv0.93 (3)1.96 (3)2.850 (3)159 (2)
O5—H5B···O3v0.94 (3)1.87 (2)2.783 (3)165 (2)
O7—H7A···O3vi0.92 (2)1.82 (3)2.736 (3)171 (3)
O7—H7B···O2vii0.93 (3)1.89 (3)2.780 (3)158 (2)
Symmetry codes: (i) x+1, y+1, z+1; (iii) x, y1, z1; (iv) x1, y, z; (v) x1, y1, z; (vi) x+2, y+2, z+1; (vii) x+1, y+2, z+1.
Selected bond lengths (Å) top
Co1—O42.056 (2)Co1—O62.093 (2)
Co1—O52.0792 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6C···O7i0.96 (2)1.76 (3)2.723 (3)174 (3)
O6—H6D···O7ii0.93 (2)1.83 (3)2.751 (3)171 (3)
O5—H5A···O2iii0.93 (3)1.96 (3)2.850 (3)159 (2)
O5—H5B···O3iv0.94 (3)1.87 (2)2.783 (3)165 (2)
O7—H7A···O3v0.92 (2)1.82 (3)2.736 (3)171 (3)
O7—H7B···O2vi0.93 (3)1.89 (3)2.780 (3)158 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z1; (iii) x1, y, z; (iv) x1, y1, z; (v) x+2, y+2, z+1; (vi) x+1, y+2, z+1.
Acknowledgements top

This work was supported by the Fundamental Research Funds for the Central Universities (No. CQDXWL-2012–024).

references
References top

Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273–282.

Deka, H., Sarma, R., Kumari, S., Khare, A. & Baruah, J. B. (2011). J. Solid State Chem. 184, 1726–1734.

Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342–8356.

James, S. L. (2003). Chem. Soc. Rev. 32, 276–288.

Karmakar, A., Baruah, J. B. & Shankar, B. (2009). CrystEngComm, 11, 832–840.

Kurmoo, M. (2009). Chem. Soc. Rev. 38, 1353–1379.

Li, L., Song, Y. L., Hou, H. W., Liu, Z. S., Yuan, G. & Su, Z. M. (2012). Inorg. Chem. Commun. 15, 289–291.

Mondal, P., Karmakar, A. J., Singh, M. W. & Baruah, J. B. (2008). CrystEngComm, 10, 1159–1550.

Murray, L. J., Dinca, M. & Long, J. R. (2009). Chem. Soc. Rev. 38, 1294–1314.

Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.