organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(2,5-Dioxooxolan-3-yl)-8-methyl-3,3a,4,5-tetra­hydro-1H-naphtho­[1,2-c]furan-1,3-dione

aLaboratory of Advanced Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, People's Republic of China
*Correspondence e-mail: liujg@iccas.ac.cn, shiyang@iccas.ac.cn

(Received 27 December 2012; accepted 6 January 2013; online 12 January 2013)

In the title compound, C17H14O6, the dihedral angle between the two anhydride rings is 76.01 (8)°while the dihedral angles between the benzene and anhydride rings are 42.60 (7) and 68.94 (7)°. The cyclo­hexene ring of the tetra­hydro­naphthalene unit exhibits an envelope conformation.

Related literature

For applications of tetra­lin-containing dianhydrides, see: Liaw et al. (2012[Liaw, D. J., Wang, K. L., Huang, Y. C., Lee, K. R., Lai, J. Y. & Ha, C. S. (2012). Prog. Polym. Sci. 37, 907-974.]); Matsumoto et al. (2009[Matsumoto, T., Mikami, D., Hashimoto, T., Kaise, M., Takahashi, R. & Kawabata, S. (2009). J. Phys. Conf. Ser. 187, 012005.]); Hasegawa & Horie (2001[Hasegawa, M. & Horie, K. (2001). Prog. Polym. Sci. 26, 259-335.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14O6

  • Mr = 314.28

  • Triclinic, [P \overline 1]

  • a = 6.6907 (13) Å

  • b = 9.166 (2) Å

  • c = 11.839 (2) Å

  • α = 78.628 (8)°

  • β = 78.352 (9)°

  • γ = 79.054 (9)°

  • V = 688.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 173 K

  • 0.28 × 0.22 × 0.12 mm

Data collection
  • Rigaku Saturn724+ CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.680, Tmax = 1.000

  • 8959 measured reflections

  • 3137 independent reflections

  • 2864 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.113

  • S = 1.07

  • 3137 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); molecular graphics: OLEX2; software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound 3,4-dicarboxy-1,2,3,4-tetrahydro-6-methyl-1-naphthalene succinic dianhydride (MTDA) can be used as monomer for alicyclic polyimide (PI) synthesis (Liaw et al., 2012). Especially, this dianhydride compound is a very promising monomer for developments of organo-soluble and highly-transparent or colorless PI films. Colorless polyimide films have recently attracted much attention in optoelectronic fabrications, such as plastic substrate for flexible display, waveguides for optical interconnection and so on, due to their excellent combined properties, including high thermal stability, high optical transparency, and low dielectric constant (Matsumoto et al., 2009). The asymmetrical alicyclic tetralin moiety in MTDA effectively reduces the inter- or intramolecular interactions and prohibits the formation of charge transfer complex (Hasegawa et al., 2001); thus improving the optical transparency and solubility of the derived PIs.

The title compound has an asymmetrical structure (Fig. 1). The dihedral angle between the best planes through the two anhydride rings is 76.01 (8)°. The dihedral angles between the benzene ring and the anhydride ring 1 (C1-C4/O1) and anhydride ring 2 (C9-C12/O4) is 42.60 (7)° and 68.94 (7)°, respectively. The six-membered cyclohexene ring in the tetrahydronaphthalene residue exhibits an envelope conformation with puckering parameters of Q=0.489 (15) Å, θ=122.8 (2)° and ϕ=300.7 (2)° (Cremer et al., 1975).

Related literature top

For applications of tetralin-containing dianhydrides, see: Liaw et al. (2012); Matsumoto et al. (2009); Hasegawa et al. (2001). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

Maleic anhydride (43.75 g, 0.446 mol), 4-methylstyrene (80.60 g, 0.682 mol), and 2,5-di-tert-butyl hydroquinone (0.1138 g, 0.5 mmol) were put into a 500-ml three-necked flask equipped with a mechanical stirrer, gas inlet, and condenser. Nitrogen was first introduced to remove the air in the system. Then, nitric oxide (NO) was introduced from a gas inlet under the surface of the reaction solution. The reaction mixture were heated to 120°C and maintained for 5 h under an atmosphere of nitric oxide. The produced red-brown nitrogen oxide gas was trapped by passing through an aqueous solution of 20 wt% sodium hydroxide. An orange precipitate formed during the reaction. After the reaction, the mixture was cooled to room temperature and 60 ml of acetonitrile was then added. The reaction mixture was heated to reflux for another 0.5 h. Then, 60 ml of toluene was added and the reaction mixture was cooled to room temperature. The produced white needlelike crystals were collected by filtration and the solid was washed in succesion with toluene and petroleum ether. The obtained white solids were dried in vacuum at 80°C for 24 h. Yield: 51.44 g (73.4%). Elemental analysis: calculated for C17H14O6: C 64.97, H 4.49%. Found: C 64.32, H 4.44%. EI—MS, m/z: 142 (M+-172, 100%). Colorless single crystals were grown by slow evaporation of an acetonitrile solution over a period of several days.

Refinement top

H atoms were positioned geometrically (C—H=0.95–1.00 Å) and refined using a riding model with the Uiso(H)=1.2 Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 30% probability level.
5-(2,5-Dioxooxolan-3-yl)-8-methyl-3,3a,4,5-tetrahydro-1H- naphtho[1,2-c]furan-1,3-dione top
Crystal data top
C17H14O6Z = 2
Mr = 314.28F(000) = 328
Triclinic, P1Dx = 1.516 Mg m3
Hall symbol: -P 1Melting point: 512 K
a = 6.6907 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.166 (2) ÅCell parameters from 2461 reflections
c = 11.839 (2) Åθ = 2.3–27.5°
α = 78.628 (8)°µ = 0.12 mm1
β = 78.352 (9)°T = 173 K
γ = 79.054 (9)°Plate, colourless
V = 688.5 (2) Å30.28 × 0.22 × 0.12 mm
Data collection top
Rigaku Saturn724+ CCD
diffractometer
3137 independent reflections
Radiation source: sealed tube2864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scans at fixed χ = 45°θmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
h = 88
Tmin = 0.680, Tmax = 1.000k = 1111
8959 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.2684P]
where P = (Fo2 + 2Fc2)/3
3137 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C17H14O6γ = 79.054 (9)°
Mr = 314.28V = 688.5 (2) Å3
Triclinic, P1Z = 2
a = 6.6907 (13) ÅMo Kα radiation
b = 9.166 (2) ŵ = 0.12 mm1
c = 11.839 (2) ÅT = 173 K
α = 78.628 (8)°0.28 × 0.22 × 0.12 mm
β = 78.352 (9)°
Data collection top
Rigaku Saturn724+ CCD
diffractometer
3137 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
2864 reflections with I > 2σ(I)
Tmin = 0.680, Tmax = 1.000Rint = 0.042
8959 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.07Δρmax = 0.32 e Å3
3137 reflectionsΔρmin = 0.22 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.92938 (16)0.39637 (11)0.93311 (9)0.0301 (3)
O20.66859 (17)0.57336 (11)0.88256 (10)0.0354 (3)
O31.15083 (16)0.18178 (12)0.96436 (10)0.0330 (3)
O40.49898 (16)0.15978 (12)0.67925 (9)0.0312 (3)
O50.27400 (16)0.18783 (12)0.84664 (10)0.0332 (3)
O60.75828 (19)0.09713 (14)0.53681 (10)0.0403 (3)
C10.7423 (2)0.44344 (15)0.89396 (12)0.0257 (3)
C20.6609 (2)0.30800 (14)0.87438 (11)0.0220 (3)
H20.55480.28060.94430.026*
C30.8484 (2)0.18248 (15)0.87829 (12)0.0235 (3)
H30.80780.08750.92780.028*
C40.9938 (2)0.24363 (15)0.93188 (13)0.0267 (3)
C50.9568 (2)0.15432 (16)0.75541 (13)0.0255 (3)
H5A1.01700.24460.71290.031*
H5B1.07120.06870.76230.031*
C60.8083 (2)0.11962 (15)0.68574 (12)0.0233 (3)
H60.88360.11870.60380.028*
C70.6239 (2)0.24430 (14)0.68056 (11)0.0217 (3)
C80.5574 (2)0.33563 (14)0.76735 (11)0.0217 (3)
C90.7444 (2)0.03861 (15)0.73173 (12)0.0243 (3)
H90.86820.10900.75530.029*
C100.5642 (2)0.05583 (16)0.83299 (12)0.0263 (3)
H10A0.61420.11190.90500.032*
H10B0.48870.04410.84840.032*
C110.6786 (2)0.09717 (16)0.63586 (13)0.0282 (3)
C120.4273 (2)0.14180 (15)0.79467 (12)0.0253 (3)
C130.5157 (2)0.26953 (16)0.58755 (12)0.0267 (3)
H130.55810.20770.52860.032*
C140.3478 (2)0.38295 (16)0.57969 (13)0.0298 (3)
H140.27690.39810.51540.036*
C150.2811 (2)0.47547 (16)0.66501 (13)0.0280 (3)
C160.3867 (2)0.44920 (15)0.75866 (13)0.0253 (3)
H160.34180.51000.81820.030*
C170.1005 (3)0.60085 (19)0.65557 (16)0.0397 (4)
H17A0.13850.67980.58990.060*
H17B0.06300.64330.72820.060*
H17C0.01750.56110.64250.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0320 (6)0.0239 (5)0.0387 (6)0.0023 (4)0.0146 (4)0.0086 (4)
O20.0399 (6)0.0225 (5)0.0467 (7)0.0026 (4)0.0148 (5)0.0122 (5)
O30.0293 (6)0.0322 (6)0.0406 (6)0.0015 (4)0.0170 (5)0.0054 (5)
O40.0339 (6)0.0336 (6)0.0306 (5)0.0099 (4)0.0074 (4)0.0095 (4)
O50.0295 (6)0.0309 (6)0.0399 (6)0.0061 (4)0.0068 (5)0.0052 (5)
O60.0437 (7)0.0467 (7)0.0346 (6)0.0114 (5)0.0020 (5)0.0212 (5)
C10.0276 (7)0.0240 (7)0.0264 (7)0.0009 (5)0.0065 (5)0.0071 (5)
C20.0227 (6)0.0206 (6)0.0224 (6)0.0017 (5)0.0039 (5)0.0043 (5)
C30.0240 (7)0.0196 (6)0.0284 (7)0.0017 (5)0.0090 (5)0.0042 (5)
C40.0291 (7)0.0235 (7)0.0289 (7)0.0032 (5)0.0088 (6)0.0047 (5)
C50.0201 (6)0.0248 (7)0.0333 (7)0.0018 (5)0.0050 (5)0.0099 (6)
C60.0214 (6)0.0232 (7)0.0255 (6)0.0010 (5)0.0032 (5)0.0079 (5)
C70.0224 (6)0.0194 (6)0.0231 (6)0.0048 (5)0.0028 (5)0.0026 (5)
C80.0215 (6)0.0196 (6)0.0241 (6)0.0033 (5)0.0049 (5)0.0025 (5)
C90.0241 (7)0.0206 (6)0.0292 (7)0.0011 (5)0.0072 (5)0.0085 (5)
C100.0310 (7)0.0231 (7)0.0265 (7)0.0044 (5)0.0087 (6)0.0044 (5)
C110.0280 (7)0.0246 (7)0.0331 (7)0.0012 (5)0.0050 (6)0.0105 (6)
C120.0265 (7)0.0202 (6)0.0290 (7)0.0003 (5)0.0094 (5)0.0031 (5)
C130.0308 (7)0.0253 (7)0.0254 (7)0.0057 (6)0.0067 (6)0.0036 (5)
C140.0323 (8)0.0283 (7)0.0304 (7)0.0054 (6)0.0141 (6)0.0012 (6)
C150.0247 (7)0.0223 (7)0.0360 (8)0.0018 (5)0.0088 (6)0.0001 (6)
C160.0247 (7)0.0203 (6)0.0307 (7)0.0018 (5)0.0050 (5)0.0050 (5)
C170.0317 (8)0.0343 (8)0.0505 (10)0.0058 (7)0.0165 (7)0.0013 (7)
Geometric parameters (Å, º) top
O1—C11.3851 (17)C6—H61.0000
O1—C41.3865 (17)C7—C131.3956 (19)
O2—C11.1915 (17)C7—C81.4027 (18)
O3—C41.1935 (17)C8—C161.3970 (18)
O4—C121.3850 (17)C9—C111.517 (2)
O4—C111.3905 (18)C9—C101.526 (2)
O5—C121.1900 (18)C9—H91.0000
O6—C111.1862 (18)C10—C121.4991 (19)
C1—C21.5207 (19)C10—H10A0.9900
C2—C81.5200 (18)C10—H10B0.9900
C2—C31.5344 (18)C13—C141.383 (2)
C2—H21.0000C13—H130.9500
C3—C41.5031 (19)C14—C151.397 (2)
C3—C51.5362 (19)C14—H140.9500
C3—H31.0000C15—C161.390 (2)
C5—C61.5244 (19)C15—C171.507 (2)
C5—H5A0.9900C16—H160.9500
C5—H5B0.9900C17—H17A0.9800
C6—C71.5165 (18)C17—H17B0.9800
C6—C91.5533 (19)C17—H17C0.9800
C1—O1—C4110.69 (11)C7—C8—C2121.09 (12)
C12—O4—C11110.64 (11)C11—C9—C10103.25 (11)
O2—C1—O1120.19 (13)C11—C9—C6110.63 (12)
O2—C1—C2130.17 (13)C10—C9—C6118.92 (11)
O1—C1—C2109.62 (11)C11—C9—H9107.9
C8—C2—C1114.64 (11)C10—C9—H9107.9
C8—C2—C3116.61 (11)C6—C9—H9107.9
C1—C2—C3103.25 (11)C12—C10—C9105.44 (11)
C8—C2—H2107.3C12—C10—H10A110.7
C1—C2—H2107.3C9—C10—H10A110.7
C3—C2—H2107.3C12—C10—H10B110.7
C4—C3—C2103.97 (11)C9—C10—H10B110.7
C4—C3—C5108.12 (11)H10A—C10—H10B108.8
C2—C3—C5112.08 (11)O6—C11—O4120.17 (13)
C4—C3—H3110.8O6—C11—C9129.62 (14)
C2—C3—H3110.8O4—C11—C9110.19 (12)
C5—C3—H3110.8O5—C12—O4120.36 (13)
O3—C4—O1120.54 (13)O5—C12—C10129.79 (13)
O3—C4—C3129.34 (13)O4—C12—C10109.80 (12)
O1—C4—C3109.98 (11)C14—C13—C7121.11 (13)
C6—C5—C3111.80 (11)C14—C13—H13119.4
C6—C5—H5A109.3C7—C13—H13119.4
C3—C5—H5A109.3C13—C14—C15120.87 (13)
C6—C5—H5B109.3C13—C14—H14119.6
C3—C5—H5B109.3C15—C14—H14119.6
H5A—C5—H5B107.9C16—C15—C14118.15 (13)
C7—C6—C5110.47 (11)C16—C15—C17120.88 (14)
C7—C6—C9112.62 (11)C14—C15—C17120.97 (14)
C5—C6—C9112.35 (11)C15—C16—C8121.59 (13)
C7—C6—H6107.0C15—C16—H16119.2
C5—C6—H6107.0C8—C16—H16119.2
C9—C6—H6107.0C15—C17—H17A109.5
C13—C7—C8118.59 (12)C15—C17—H17B109.5
C13—C7—C6119.62 (12)H17A—C17—H17B109.5
C8—C7—C6121.79 (12)C15—C17—H17C109.5
C16—C8—C7119.69 (13)H17A—C17—H17C109.5
C16—C8—C2119.14 (12)H17B—C17—H17C109.5
C4—O1—C1—O2175.65 (13)C3—C2—C8—C16179.58 (12)
C4—O1—C1—C25.59 (15)C1—C2—C8—C7124.46 (13)
O2—C1—C2—C840.1 (2)C3—C2—C8—C73.66 (18)
O1—C1—C2—C8141.25 (12)C7—C6—C9—C1178.97 (14)
O2—C1—C2—C3168.05 (15)C5—C6—C9—C11155.52 (11)
O1—C1—C2—C313.35 (14)C7—C6—C9—C1040.22 (17)
C8—C2—C3—C4141.97 (12)C5—C6—C9—C1085.29 (15)
C1—C2—C3—C415.30 (13)C11—C9—C10—C128.01 (14)
C8—C2—C3—C525.43 (16)C6—C9—C10—C12130.94 (12)
C1—C2—C3—C5101.23 (12)C12—O4—C11—O6177.29 (13)
C1—O1—C4—O3178.89 (13)C12—O4—C11—C93.61 (15)
C1—O1—C4—C35.03 (15)C10—C9—C11—O6173.67 (15)
C2—C3—C4—O3171.22 (15)C6—C9—C11—O645.4 (2)
C5—C3—C4—O369.50 (19)C10—C9—C11—O47.34 (15)
C2—C3—C4—O113.15 (15)C6—C9—C11—O4135.61 (11)
C5—C3—C4—O1106.13 (13)C11—O4—C12—O5179.67 (12)
C4—C3—C5—C6169.56 (11)C11—O4—C12—C101.92 (15)
C2—C3—C5—C655.55 (15)C9—C10—C12—O5176.04 (14)
C3—C5—C6—C755.19 (15)C9—C10—C12—O46.49 (15)
C3—C5—C6—C971.49 (14)C8—C7—C13—C140.7 (2)
C5—C6—C7—C13154.16 (12)C6—C7—C13—C14179.52 (13)
C9—C6—C7—C1379.31 (15)C7—C13—C14—C150.2 (2)
C5—C6—C7—C826.09 (17)C13—C14—C15—C160.7 (2)
C9—C6—C7—C8100.44 (15)C13—C14—C15—C17178.93 (14)
C13—C7—C8—C160.3 (2)C14—C15—C16—C81.1 (2)
C6—C7—C8—C16179.93 (12)C17—C15—C16—C8178.53 (13)
C13—C7—C8—C2176.43 (12)C7—C8—C16—C150.6 (2)
C6—C7—C8—C23.3 (2)C2—C8—C16—C15177.42 (12)
C1—C2—C8—C1658.78 (16)

Experimental details

Crystal data
Chemical formulaC17H14O6
Mr314.28
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.6907 (13), 9.166 (2), 11.839 (2)
α, β, γ (°)78.628 (8), 78.352 (9), 79.054 (9)
V3)688.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.28 × 0.22 × 0.12
Data collection
DiffractometerRigaku Saturn724+ CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.680, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8959, 3137, 2864
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.113, 1.07
No. of reflections3137
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.22

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), SHELXL97 (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China for financial support. They also thank Dr Tong Lin Liang of ICCAS for the X-ray data collection.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHasegawa, M. & Horie, K. (2001). Prog. Polym. Sci. 26, 259–335.  CrossRef CAS Google Scholar
First citationLiaw, D. J., Wang, K. L., Huang, Y. C., Lee, K. R., Lai, J. Y. & Ha, C. S. (2012). Prog. Polym. Sci. 37, 907–974.  Web of Science CrossRef CAS Google Scholar
First citationMatsumoto, T., Mikami, D., Hashimoto, T., Kaise, M., Takahashi, R. & Kawabata, S. (2009). J. Phys. Conf. Ser. 187, 012005.  CrossRef Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds