metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages m106-m107

Tetra­methyl­ammonium aqua­tri­chlorido­oxalatostannate(IV) monohydrate

aLaboratoire de Chimie Minerale et Analytique (LACHIMIA), Departement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDepartment of Chemistry, University of Bath, Bath BA2 7AY, England
*Correspondence e-mail: yayasow81@yahoo.fr

(Received 5 December 2012; accepted 9 January 2013; online 16 January 2013)

The SnIV atom in the title compound, [(CH3)4N][Sn(C2O4)Cl3(H2O)]·H2O, obtained from the reaction between SnCl4 and [(CH3)4N]2C2O4·2H2O, is six-coordinated by three Cl atoms, an O atom of a water mol­ecule and two O atoms from an asymmetrically chelating oxalate anion. The environment around the SnIV atom is distorted octa­hedral. The anions are connected by the lattice water mol­ecule through O—H⋯O hydrogen bonds, leading to a layered structure parallel to (010). The cations are located between these layers and besides Coulombic forces are connected to the anionic layers through weak C—H⋯O and C—H⋯Cl inter­actions.

Related literature

For background to halogentin(IV) chemistry, see: Hausen et al. (1986[Hausen, H.-D., Schwarz, W., Ragca, G. & Weidlein, J. (1986). Z. Naturforsch. Teil B, 41, 1223-1229.]); Koutsantonis et al. (2003[Koutsantonis, G. A., Morien, T. S., Skelton, B. W. & White, A. H. (2003). Acta Cryst. C59, m361-m365.]); Mahon et al. (2004[Mahon, M. F., Moldovan, N. L., Molloy, K. C., Muresan, A., Silaghi-Dumitrescu, I. & Silaghi-Dumitrescu, L. (2004). J. Chem. Soc. Dalton Trans. 23, 4017-4021.]); Patt-Siebel et al.(1986[Patt-Siebel, U., Ruangsuttinarupap, S., Müller, U., Pebler, J. & Dehnicke, K. (1986). Z. Naturforsch. Teil B, 41, 1191-1195.]); Szymanska-Buzar et al. (2001[Szymanska-Buzar, T., Glowiak, T. & Czelusnuak, I. (2001). Main Group Met. Chem. 24, 821-822.]); Tudela et al. (1986[Tudela, D. V., Fernadez, V., Tomero, J. D. & Vegas, A. (1986). Z. Anorg. Allg. Chem. 532, 215-224.]). For tin compounds containing an Sn—Cl bond in a cis- or trans-position, see: Fernandez et al. (2002[Fernandez, D., Garcia-Seijo, M. I., Kegl, T., Petocz, G., Kollar, L. & Garcia-Fernandez, M. E. (2002). Inorg. Chem. 41, 4435-4443.]); Hazell et al. (1998[Hazell, A., Khoo, L. E., Ouyang, J., Rausch, B. J. & Tavares, Z. M. (1998). Acta Cryst. C54, 728-732.]); Sow et al. (2010[Sow, Y., Diop, L., Kociock-Köhn, G. & Molloy, K. C. (2010). Main Group Met. Chem. 33, 205-207.]). For tin compounds containing carboxyl­ate moieties, see: Ng & Kumar Das (1993[Ng, S. W. & Kumar Das, V. G. (1993). Main Group Met. Chem. 16, 87-93.]); Xu et al. (2003[Xu, T., Yang, S.-Y., Xie, Z.-X. & Ng, S. W. (2003). Acta Cryst. E59, m873-m875.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H12N)[Sn(C2O4)Cl3(H2O)]·H2O

  • Mr = 423.24

  • Monoclinic, P 21 /n

  • a = 7.2458 (1) Å

  • b = 22.2812 (2) Å

  • c = 9.6019 (1) Å

  • β = 98.015 (1)°

  • V = 1535.04 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.20 mm−1

  • T = 150 K

  • 0.15 × 0.15 × 0.13 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.734, Tmax = 0.763

  • 35849 measured reflections

  • 4445 independent reflections

  • 3855 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.062

  • S = 1.08

  • 4445 reflections

  • 175 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H50A⋯O6 0.86 (2) 1.66 (2) 2.511 (2) 173 (3)
O5—H50B⋯O4i 0.85 (2) 1.78 (2) 2.6120 (19) 168 (3)
O6—H60B⋯O3ii 0.84 (2) 1.99 (2) 2.792 (2) 160 (3)
O6—H60A⋯O3iii 0.84 (2) 1.95 (2) 2.7840 (19) 172 (3)
O6—H60B⋯O4ii 0.84 (2) 2.47 (3) 2.993 (2) 122 (3)
C6—H6B⋯O6i 0.98 2.54 3.411 (3) 148
C6—H6A⋯Cl3iv 0.98 2.91 3.762 (3) 146
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x-1, y, z; (iii) -x+2, -y, -z+2; (iv) x, y, z-1.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Numerous crystal structures of SnX4 adducts (X = halogen) containing tin(IV) in an octahedral environment have been reported up to date, e.g. Hausen et al. (1986); Koutsantonis et al. (2003); Mahon et al. (2004); Patt-Siebel et al. (1986); Szymanska-Buzar et al. (2001); Tudela et al. (1986). Our group has previously reported the crystal structure of ((n-C3H7)2NH2)2[Sn(C2O4)Cl4] which contains a chelating oxalate anion, and the environment of tin(IV) being likewise octahedral (Sow et al., 2010). In the context of our search for new SnX4 adducts we report here the study of the reaction between ((CH3)4N)2C2O4.2H2O and SnCl4 which has yielded the title compound, ((CH3)4N)[Sn(C2O4)Cl3(H2O)].H2O. While many SnX4 adducts have been reported (see above), a complex with a [SnCl3]-containing residue is reported here.

The octahedral geometry around the tin(IV) atom is defined by three Cl atoms, two oxygen atoms from the chelating oxalate anion and the oxygen atom of a water molecule (Fig. 1). The two oxygen atoms from the oxalate anion and two of the Cl atoms are in the equatorial plane while the remaining Cl atom and the oxygen atom of the H2O molecule are in axial positions.

The [Sn(C2O4)Cl3(H2O)]- anions are connected to the lattice water molecule through H—O—H···OH2 hydrogen bonds. The water molecule bonded to the tin(IV) atom is also hydrogen-bonded to the O4 atom of a neighbour complex-anion. The lattice water molecule O6 is bonded to O3 and O4 of the same oxalate anion through a bifurcated hydrogen bond and to a O3 atom of a neighbouring oxalate anion, leading to a layered structure extending parallel to (010). The cations are located between the anionic planes (Figs. 2,3). In the crystal packing, C—H···O and C—H···Cl interactions between cations and anions are also observed (Table 1).

The angle O5—Sn—Cl3 [170.75°(5)] deviates from linearity. The two Sn—Cl bond lengths in the equatorial plane are very similar [Sn—Cl2 = 2.3598 (5), Sn—Cl1 = 2.3627 (5) Å], but different from the one trans to the water molecule [Sn—Cl3 = 2.3926 (5) Å], pointing to a weak trans-effect involving the latter. The Sn—O5 bond of 2.0781 (15) Å involving the water molecule is shorter than the Sn—O bonds distances involving the oxalate anion [Sn—O1 = 2.0980 (13); Sn—O2 = 2.1025 (13) Å], whereby these two last Sn—O distances are very close. The dimensions of Sn—O bonds and Sn—Cl bonds are in the range of Sn—O and Sn—Cl bonds reported for O2SnCl4 containing adducts with cis- or trans-geometry (Fernandez et al., 2002; Hazell et al., 1998; Sow et al., 2010).

The C—O distances [O1—C1 = 1.285 (2); O2—C2 = 1.288 (2) Å; O3—C1 = 1.219 (2) Å; O4—C2 = 1.223 (2) Å] are in the typical range of C—O and CO bonds (Ng & Kumar Das, 1993; Xu et al., 2003).

Related literature top

For background to halogentin(IV) chemistry, see: Hausen et al. (1986); Koutsantonis et al. (2003); Mahon et al. (2004); Patt-Siebel et al.(1986); Szymanska-Buzar et al. (2001); Tudela et al. (1986). For tin compounds containing an Sn—Cl bond in a cis- or trans-position, see: Fernandez et al. (2002); Hazell et al. (1998); Sow et al. (2010). For tin compounds containing carboxylate moieties, see: Ng & Kumar Das (1993); Xu et al. (2003).

Experimental top

All chemicals were purchased from Aldrich (Germany) and used without any further purification. ((CH3)4N)2C2O4.2H2O has been obtained on allowing ((CH3)4N)OH as a 20% water solution to react with oxalic acid in a 2:1 ratio. A powder is obtained after evaporation of water at 333 K. On allowing the oxalic acid salt to react with SnCl4 in a 1:1 ratio in ethanol, a colorless solution is obtained, which gives, after slow solvent evaporation, crystals suitable for X-ray determination . The reaction equation of the title compound is: ((CH3)4N)2C2O4.2H2O + SnCl4 ((CH3)4N)Cl + ((CH3)4N)[Sn(C2O4)Cl3H2O].H2O

Refinement top

Water molecule hydrogen atoms have been located in the difference fourier map and were refined with an idealized bond lenght of 0.85 Å. The other hydrogen atoms have been placed onto calculated position and were refined using a riding model, with C—H distances of 0.98 Å and Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The asymmetric unit showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The layered structure of the anions and the lattice water molecule parallel to (010). O—H···O hydrogen bonding interactions are shown as dashed lines.
[Figure 3] Fig. 3. The packing of the structure showing O—H···O hydrogen bonding interactions as dashed lines [C—H···O and C—H···Cl contacts are omitted for clarity].
Tetramethylammonium aquatrichloridooxalatostannate(IV) monohydrate top
Crystal data top
(C4H12N)[Sn(C2O4)Cl3(H2O)]·H2OF(000) = 832
Mr = 423.24Dx = 1.831 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 29534 reflections
a = 7.2458 (1) Åθ = 2.9–30.0°
b = 22.2812 (2) ŵ = 2.20 mm1
c = 9.6019 (1) ÅT = 150 K
β = 98.015 (1)°Irregular, colourless
V = 1535.04 (3) Å30.15 × 0.15 × 0.13 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4445 independent reflections
Radiation source: fine-focus sealed tube3855 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
461 1.3 degree images with ω scansθmax = 30.0°, θmin = 4.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1010
Tmin = 0.734, Tmax = 0.763k = 2831
35849 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0322P)2 + 0.5616P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4445 reflectionsΔρmax = 0.92 e Å3
175 parametersΔρmin = 0.79 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0124 (5)
Crystal data top
(C4H12N)[Sn(C2O4)Cl3(H2O)]·H2OV = 1535.04 (3) Å3
Mr = 423.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2458 (1) ŵ = 2.20 mm1
b = 22.2812 (2) ÅT = 150 K
c = 9.6019 (1) Å0.15 × 0.15 × 0.13 mm
β = 98.015 (1)°
Data collection top
Nonius KappaCCD
diffractometer
4445 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3855 reflections with I > 2σ(I)
Tmin = 0.734, Tmax = 0.763Rint = 0.042
35849 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0264 restraints
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.92 e Å3
4445 reflectionsΔρmin = 0.79 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.834510 (17)0.112222 (6)0.679281 (12)0.02693 (6)
Cl10.61541 (8)0.13476 (3)0.83233 (5)0.03867 (12)
Cl20.66559 (8)0.14793 (3)0.46760 (5)0.04369 (14)
Cl31.01222 (8)0.20243 (2)0.72319 (6)0.04152 (13)
O50.7216 (2)0.02693 (7)0.64413 (15)0.0372 (3)
O11.00588 (18)0.07154 (6)0.84708 (13)0.0278 (3)
O31.2565 (2)0.01364 (6)0.89271 (13)0.0310 (3)
O41.28776 (19)0.01308 (7)0.61246 (13)0.0323 (3)
O21.04412 (18)0.07556 (6)0.57415 (13)0.0285 (3)
O60.5915 (2)0.03357 (7)0.82856 (15)0.0320 (3)
N1.0670 (2)0.16827 (7)0.20003 (17)0.0298 (3)
C11.1444 (2)0.04194 (8)0.81171 (17)0.0241 (3)
C21.1635 (3)0.04294 (8)0.65224 (18)0.0249 (3)
C30.9820 (3)0.10701 (9)0.1966 (3)0.0370 (5)
H3A0.89110.10530.26320.055*
H3B1.07980.07710.22280.055*
H3C0.91920.09850.10150.055*
C40.9184 (4)0.21327 (11)0.1570 (3)0.0561 (7)
H4A0.85580.20360.06240.084*
H4B0.97390.25340.15660.084*
H4C0.82740.21250.22350.084*
C51.1603 (4)0.18245 (13)0.3445 (2)0.0500 (6)
H5A1.21320.22300.34580.075*
H5B1.26010.15330.37210.075*
H5C1.06890.18040.41060.075*
C61.2081 (4)0.17066 (11)0.0997 (3)0.0491 (6)
H6A1.14820.15990.00510.074*
H6B1.30900.14230.13000.074*
H6C1.25920.21130.09840.074*
H50B0.703 (4)0.0121 (13)0.562 (2)0.058 (8)*
H60B0.481 (3)0.0227 (14)0.829 (3)0.057 (9)*
H60A0.647 (4)0.0270 (13)0.909 (2)0.053 (8)*
H50A0.668 (4)0.0068 (12)0.704 (3)0.059 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.02791 (9)0.02922 (8)0.02369 (8)0.00383 (4)0.00368 (5)0.00042 (4)
Cl10.0382 (3)0.0436 (3)0.0363 (3)0.0062 (2)0.0124 (2)0.0069 (2)
Cl20.0376 (3)0.0596 (3)0.0325 (3)0.0146 (2)0.0002 (2)0.0094 (2)
Cl30.0423 (3)0.0295 (2)0.0520 (3)0.0019 (2)0.0039 (2)0.0029 (2)
O50.0468 (9)0.0414 (8)0.0256 (7)0.0136 (7)0.0122 (6)0.0087 (6)
O10.0321 (7)0.0308 (6)0.0208 (6)0.0045 (5)0.0048 (5)0.0001 (5)
O30.0316 (7)0.0376 (7)0.0230 (6)0.0047 (6)0.0014 (5)0.0034 (5)
O40.0291 (7)0.0442 (8)0.0230 (6)0.0069 (6)0.0018 (5)0.0051 (5)
O20.0287 (7)0.0362 (7)0.0209 (6)0.0051 (5)0.0040 (5)0.0033 (5)
O60.0323 (8)0.0396 (8)0.0239 (7)0.0062 (6)0.0031 (6)0.0003 (5)
N0.0361 (9)0.0254 (7)0.0272 (8)0.0021 (6)0.0018 (6)0.0007 (6)
C10.0268 (9)0.0247 (8)0.0205 (8)0.0031 (6)0.0024 (7)0.0013 (6)
C20.0260 (9)0.0281 (8)0.0199 (8)0.0025 (7)0.0014 (6)0.0014 (6)
C30.0409 (12)0.0269 (9)0.0445 (12)0.0048 (8)0.0106 (10)0.0014 (8)
C40.0539 (15)0.0325 (12)0.0774 (19)0.0084 (10)0.0061 (13)0.0040 (11)
C50.0551 (15)0.0598 (15)0.0319 (11)0.0207 (12)0.0052 (10)0.0029 (10)
C60.0646 (16)0.0399 (12)0.0477 (13)0.0152 (11)0.0249 (12)0.0067 (10)
Geometric parameters (Å, º) top
Sn—O52.0781 (15)N—C31.496 (2)
Sn—O12.0980 (13)N—C61.500 (3)
Sn—O22.1025 (13)C1—C21.557 (2)
Sn—Cl22.3598 (5)C3—H3A0.9800
Sn—Cl12.3627 (5)C3—H3B0.9800
Sn—Cl32.3926 (5)C3—H3C0.9800
O5—H50B0.850 (17)C4—H4A0.9800
O5—H50A0.859 (17)C4—H4B0.9800
O1—C11.285 (2)C4—H4C0.9800
O3—C11.219 (2)C5—H5A0.9800
O4—C21.223 (2)C5—H5B0.9800
O2—C21.288 (2)C5—H5C0.9800
O6—H60B0.836 (17)C6—H6A0.9800
O6—H60A0.836 (17)C6—H6B0.9800
N—C41.488 (3)C6—H6C0.9800
N—C51.490 (3)
O5—Sn—O184.67 (6)O1—C1—C2115.63 (15)
O5—Sn—O282.02 (6)O4—C2—O2126.11 (16)
O1—Sn—O279.11 (5)O4—C2—C1118.03 (16)
O5—Sn—Cl291.33 (5)O2—C2—C1115.85 (15)
O1—Sn—Cl2170.93 (4)N—C3—H3A109.5
O2—Sn—Cl292.30 (4)N—C3—H3B109.5
O5—Sn—Cl190.68 (4)H3A—C3—H3B109.5
O1—Sn—Cl189.50 (4)N—C3—H3C109.5
O2—Sn—Cl1166.95 (4)H3A—C3—H3C109.5
Cl2—Sn—Cl198.70 (2)H3B—C3—H3C109.5
O5—Sn—Cl3170.75 (5)N—C4—H4A109.5
O1—Sn—Cl388.93 (4)N—C4—H4B109.5
O2—Sn—Cl390.23 (4)H4A—C4—H4B109.5
Cl2—Sn—Cl394.03 (2)N—C4—H4C109.5
Cl1—Sn—Cl395.95 (2)H4A—C4—H4C109.5
Sn—O5—H50B121 (2)H4B—C4—H4C109.5
Sn—O5—H50A125 (2)N—C5—H5A109.5
H50B—O5—H50A113 (3)N—C5—H5B109.5
C1—O1—Sn114.77 (11)H5A—C5—H5B109.5
C2—O2—Sn114.29 (11)N—C5—H5C109.5
H60B—O6—H60A107 (3)H5A—C5—H5C109.5
C4—N—C5109.4 (2)H5B—C5—H5C109.5
C4—N—C3109.18 (18)N—C6—H6A109.5
C5—N—C3110.24 (17)N—C6—H6B109.5
C4—N—C6109.2 (2)H6A—C6—H6B109.5
C5—N—C6109.25 (18)N—C6—H6C109.5
C3—N—C6109.49 (16)H6A—C6—H6C109.5
O3—C1—O1124.90 (16)H6B—C6—H6C109.5
O3—C1—C2119.47 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H50A···O60.86 (2)1.66 (2)2.511 (2)173 (3)
O5—H50B···O4i0.85 (2)1.78 (2)2.6120 (19)168 (3)
O6—H60B···O3ii0.84 (2)1.99 (2)2.792 (2)160 (3)
O6—H60A···O3iii0.84 (2)1.95 (2)2.7840 (19)172 (3)
O6—H60B···O4ii0.84 (2)2.47 (3)2.993 (2)122 (3)
C6—H6B···O6i0.982.543.411 (3)148
C6—H6A···Cl3iv0.982.913.762 (3)146
Symmetry codes: (i) x+2, y, z+1; (ii) x1, y, z; (iii) x+2, y, z+2; (iv) x, y, z1.

Experimental details

Crystal data
Chemical formula(C4H12N)[Sn(C2O4)Cl3(H2O)]·H2O
Mr423.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)7.2458 (1), 22.2812 (2), 9.6019 (1)
β (°) 98.015 (1)
V3)1535.04 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.20
Crystal size (mm)0.15 × 0.15 × 0.13
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.734, 0.763
No. of measured, independent and
observed [I > 2σ(I)] reflections
35849, 4445, 3855
Rint0.042
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.062, 1.08
No. of reflections4445
No. of parameters175
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.92, 0.79

Computer programs: COLLECT (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H50A···O60.859 (17)1.657 (18)2.511 (2)173 (3)
O5—H50B···O4i0.850 (17)1.775 (18)2.6120 (19)168 (3)
O6—H60B···O3ii0.836 (17)1.99 (2)2.792 (2)160 (3)
O6—H60A···O3iii0.836 (17)1.954 (18)2.7840 (19)172 (3)
O6—H60B···O4ii0.836 (17)2.47 (3)2.993 (2)122 (3)
C6—H6B···O6i0.982.543.411 (3)147.7
C6—H6A···Cl3iv0.982.913.762 (3)146.3
Symmetry codes: (i) x+2, y, z+1; (ii) x1, y, z; (iii) x+2, y, z+2; (iv) x, y, z1.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFernandez, D., Garcia-Seijo, M. I., Kegl, T., Petocz, G., Kollar, L. & Garcia-Fernandez, M. E. (2002). Inorg. Chem. 41, 4435–4443.  Web of Science PubMed CAS Google Scholar
First citationHausen, H.-D., Schwarz, W., Ragca, G. & Weidlein, J. (1986). Z. Naturforsch. Teil B, 41, 1223–1229.  Google Scholar
First citationHazell, A., Khoo, L. E., Ouyang, J., Rausch, B. J. & Tavares, Z. M. (1998). Acta Cryst. C54, 728–732.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKoutsantonis, G. A., Morien, T. S., Skelton, B. W. & White, A. H. (2003). Acta Cryst. C59, m361–m365.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMahon, M. F., Moldovan, N. L., Molloy, K. C., Muresan, A., Silaghi-Dumitrescu, I. & Silaghi-Dumitrescu, L. (2004). J. Chem. Soc. Dalton Trans. 23, 4017–4021.  CrossRef Google Scholar
First citationNg, S. W. & Kumar Das, V. G. (1993). Main Group Met. Chem. 16, 87–93.  CAS Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPatt-Siebel, U., Ruangsuttinarupap, S., Müller, U., Pebler, J. & Dehnicke, K. (1986). Z. Naturforsch. Teil B, 41, 1191–1195.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSow, Y., Diop, L., Kociock-Köhn, G. & Molloy, K. C. (2010). Main Group Met. Chem. 33, 205–207.  CSD CrossRef CAS Google Scholar
First citationSzymanska-Buzar, T., Glowiak, T. & Czelusnuak, I. (2001). Main Group Met. Chem. 24, 821–822.  CAS Google Scholar
First citationTudela, D. V., Fernadez, V., Tomero, J. D. & Vegas, A. (1986). Z. Anorg. Allg. Chem. 532, 215–224.  CSD CrossRef CAS Web of Science Google Scholar
First citationXu, T., Yang, S.-Y., Xie, Z.-X. & Ng, S. W. (2003). Acta Cryst. E59, m873–m875.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages m106-m107
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds