supplementary materials


wm2712 scheme

Acta Cryst. (2013). E69, m106-m107    [ doi:10.1107/S1600536813000895 ]

Tetramethylammonium aquatrichloridooxalatostannate(IV) monohydrate

Y. Sow, L. Diop, K. C. Molloy and G. Kociok-Köhn

Abstract top

The SnIV atom in the title compound, [(CH3)4N][Sn(C2O4)Cl3(H2O)]·H2O, obtained from the reaction between SnCl4 and [(CH3)4N]2C2O4·2H2O, is six-coordinated by three Cl atoms, an O atom of a water molecule and two O atoms from an asymmetrically chelating oxalate anion. The environment around the SnIV atom is distorted octahedral. The anions are connected by the lattice water molecule through O-H...O hydrogen bonds, leading to a layered structure parallel to (010). The cations are located between these layers and besides Coulombic forces are connected to the anionic layers through weak C-H...O and C-H...Cl interactions.

Comment top

Numerous crystal structures of SnX4 adducts (X = halogen) containing tin(IV) in an octahedral environment have been reported up to date, e.g. Hausen et al. (1986); Koutsantonis et al. (2003); Mahon et al. (2004); Patt-Siebel et al. (1986); Szymanska-Buzar et al. (2001); Tudela et al. (1986). Our group has previously reported the crystal structure of ((n-C3H7)2NH2)2[Sn(C2O4)Cl4] which contains a chelating oxalate anion, and the environment of tin(IV) being likewise octahedral (Sow et al., 2010). In the context of our search for new SnX4 adducts we report here the study of the reaction between ((CH3)4N)2C2O4.2H2O and SnCl4 which has yielded the title compound, ((CH3)4N)[Sn(C2O4)Cl3(H2O)].H2O. While many SnX4 adducts have been reported (see above), a complex with a [SnCl3]-containing residue is reported here.

The octahedral geometry around the tin(IV) atom is defined by three Cl atoms, two oxygen atoms from the chelating oxalate anion and the oxygen atom of a water molecule (Fig. 1). The two oxygen atoms from the oxalate anion and two of the Cl atoms are in the equatorial plane while the remaining Cl atom and the oxygen atom of the H2O molecule are in axial positions.

The [Sn(C2O4)Cl3(H2O)]- anions are connected to the lattice water molecule through H—O—H···OH2 hydrogen bonds. The water molecule bonded to the tin(IV) atom is also hydrogen-bonded to the O4 atom of a neighbour complex-anion. The lattice water molecule O6 is bonded to O3 and O4 of the same oxalate anion through a bifurcated hydrogen bond and to a O3 atom of a neighbouring oxalate anion, leading to a layered structure extending parallel to (010). The cations are located between the anionic planes (Figs. 2,3). In the crystal packing, C—H···O and C—H···Cl interactions between cations and anions are also observed (Table 1).

The angle O5—Sn—Cl3 [170.75°(5)] deviates from linearity. The two Sn—Cl bond lengths in the equatorial plane are very similar [Sn—Cl2 = 2.3598 (5), Sn—Cl1 = 2.3627 (5) Å], but different from the one trans to the water molecule [Sn—Cl3 = 2.3926 (5) Å], pointing to a weak trans-effect involving the latter. The Sn—O5 bond of 2.0781 (15) Å involving the water molecule is shorter than the Sn—O bonds distances involving the oxalate anion [Sn—O1 = 2.0980 (13); Sn—O2 = 2.1025 (13) Å], whereby these two last Sn—O distances are very close. The dimensions of Sn—O bonds and Sn—Cl bonds are in the range of Sn—O and Sn—Cl bonds reported for O2SnCl4 containing adducts with cis- or trans-geometry (Fernandez et al., 2002; Hazell et al., 1998; Sow et al., 2010).

The C—O distances [O1—C1 = 1.285 (2); O2—C2 = 1.288 (2) Å; O3—C1 = 1.219 (2) Å; O4—C2 = 1.223 (2) Å] are in the typical range of C—O and CO bonds (Ng & Kumar Das, 1993; Xu et al., 2003).

Related literature top

For background to halogentin(IV) chemistry, see: Hausen et al. (1986); Koutsantonis et al. (2003); Mahon et al. (2004); Patt-Siebel et al.(1986); Szymanska-Buzar et al. (2001); Tudela et al. (1986). For tin compounds containing an Sn—Cl bond in a cis- or trans-position, see: Fernandez et al. (2002); Hazell et al. (1998); Sow et al. (2010). For tin compounds containing carboxylate moieties, see: Ng & Kumar Das (1993); Xu et al. (2003).

Experimental top

All chemicals were purchased from Aldrich (Germany) and used without any further purification. ((CH3)4N)2C2O4.2H2O has been obtained on allowing ((CH3)4N)OH as a 20% water solution to react with oxalic acid in a 2:1 ratio. A powder is obtained after evaporation of water at 333 K. On allowing the oxalic acid salt to react with SnCl4 in a 1:1 ratio in ethanol, a colorless solution is obtained, which gives, after slow solvent evaporation, crystals suitable for X-ray determination . The reaction equation of the title compound is: ((CH3)4N)2C2O4.2H2O + SnCl4 ((CH3)4N)Cl + ((CH3)4N)[Sn(C2O4)Cl3H2O].H2O

Refinement top

Water molecule hydrogen atoms have been located in the difference fourier map and were refined with an idealized bond lenght of 0.85 Å. The other hydrogen atoms have been placed onto calculated position and were refined using a riding model, with C—H distances of 0.98 Å and Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The asymmetric unit showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The layered structure of the anions and the lattice water molecule parallel to (010). O—H···O hydrogen bonding interactions are shown as dashed lines.
[Figure 3] Fig. 3. The packing of the structure showing O—H···O hydrogen bonding interactions as dashed lines [C—H···O and C—H···Cl contacts are omitted for clarity].
Tetramethylammonium aquatrichloridooxalatostannate(IV) monohydrate top
Crystal data top
(C4H12N)[Sn(C2O4)Cl3(H2O)]·H2OF(000) = 832
Mr = 423.24Dx = 1.831 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 29534 reflections
a = 7.2458 (1) Åθ = 2.9–30.0°
b = 22.2812 (2) ŵ = 2.20 mm1
c = 9.6019 (1) ÅT = 150 K
β = 98.015 (1)°Irregular, colourless
V = 1535.04 (3) Å30.15 × 0.15 × 0.13 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4445 independent reflections
Radiation source: fine-focus sealed tube3855 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
461 1.3 degree images with ω scansθmax = 30.0°, θmin = 4.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1010
Tmin = 0.734, Tmax = 0.763k = 2831
35849 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0322P)2 + 0.5616P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4445 reflectionsΔρmax = 0.92 e Å3
175 parametersΔρmin = 0.79 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0124 (5)
Crystal data top
(C4H12N)[Sn(C2O4)Cl3(H2O)]·H2OV = 1535.04 (3) Å3
Mr = 423.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2458 (1) ŵ = 2.20 mm1
b = 22.2812 (2) ÅT = 150 K
c = 9.6019 (1) Å0.15 × 0.15 × 0.13 mm
β = 98.015 (1)°
Data collection top
Nonius KappaCCD
diffractometer
4445 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3855 reflections with I > 2σ(I)
Tmin = 0.734, Tmax = 0.763Rint = 0.042
35849 measured reflectionsθmax = 30.0°
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062Δρmax = 0.92 e Å3
S = 1.08Δρmin = 0.79 e Å3
4445 reflectionsAbsolute structure: ?
175 parametersFlack parameter: ?
4 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.834510 (17)0.112222 (6)0.679281 (12)0.02693 (6)
Cl10.61541 (8)0.13476 (3)0.83233 (5)0.03867 (12)
Cl20.66559 (8)0.14793 (3)0.46760 (5)0.04369 (14)
Cl31.01222 (8)0.20243 (2)0.72319 (6)0.04152 (13)
O50.7216 (2)0.02693 (7)0.64413 (15)0.0372 (3)
O11.00588 (18)0.07154 (6)0.84708 (13)0.0278 (3)
O31.2565 (2)0.01364 (6)0.89271 (13)0.0310 (3)
O41.28776 (19)0.01308 (7)0.61246 (13)0.0323 (3)
O21.04412 (18)0.07556 (6)0.57415 (13)0.0285 (3)
O60.5915 (2)0.03357 (7)0.82856 (15)0.0320 (3)
N1.0670 (2)0.16827 (7)0.20003 (17)0.0298 (3)
C11.1444 (2)0.04194 (8)0.81171 (17)0.0241 (3)
C21.1635 (3)0.04294 (8)0.65224 (18)0.0249 (3)
C30.9820 (3)0.10701 (9)0.1966 (3)0.0370 (5)
H3A0.89110.10530.26320.055*
H3B1.07980.07710.22280.055*
H3C0.91920.09850.10150.055*
C40.9184 (4)0.21327 (11)0.1570 (3)0.0561 (7)
H4A0.85580.20360.06240.084*
H4B0.97390.25340.15660.084*
H4C0.82740.21250.22350.084*
C51.1603 (4)0.18245 (13)0.3445 (2)0.0500 (6)
H5A1.21320.22300.34580.075*
H5B1.26010.15330.37210.075*
H5C1.06890.18040.41060.075*
C61.2081 (4)0.17066 (11)0.0997 (3)0.0491 (6)
H6A1.14820.15990.00510.074*
H6B1.30900.14230.13000.074*
H6C1.25920.21130.09840.074*
H50B0.703 (4)0.0121 (13)0.562 (2)0.058 (8)*
H60B0.481 (3)0.0227 (14)0.829 (3)0.057 (9)*
H60A0.647 (4)0.0270 (13)0.909 (2)0.053 (8)*
H50A0.668 (4)0.0068 (12)0.704 (3)0.059 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.02791 (9)0.02922 (8)0.02369 (8)0.00383 (4)0.00368 (5)0.00042 (4)
Cl10.0382 (3)0.0436 (3)0.0363 (3)0.0062 (2)0.0124 (2)0.0069 (2)
Cl20.0376 (3)0.0596 (3)0.0325 (3)0.0146 (2)0.0002 (2)0.0094 (2)
Cl30.0423 (3)0.0295 (2)0.0520 (3)0.0019 (2)0.0039 (2)0.0029 (2)
O50.0468 (9)0.0414 (8)0.0256 (7)0.0136 (7)0.0122 (6)0.0087 (6)
O10.0321 (7)0.0308 (6)0.0208 (6)0.0045 (5)0.0048 (5)0.0001 (5)
O30.0316 (7)0.0376 (7)0.0230 (6)0.0047 (6)0.0014 (5)0.0034 (5)
O40.0291 (7)0.0442 (8)0.0230 (6)0.0069 (6)0.0018 (5)0.0051 (5)
O20.0287 (7)0.0362 (7)0.0209 (6)0.0051 (5)0.0040 (5)0.0033 (5)
O60.0323 (8)0.0396 (8)0.0239 (7)0.0062 (6)0.0031 (6)0.0003 (5)
N0.0361 (9)0.0254 (7)0.0272 (8)0.0021 (6)0.0018 (6)0.0007 (6)
C10.0268 (9)0.0247 (8)0.0205 (8)0.0031 (6)0.0024 (7)0.0013 (6)
C20.0260 (9)0.0281 (8)0.0199 (8)0.0025 (7)0.0014 (6)0.0014 (6)
C30.0409 (12)0.0269 (9)0.0445 (12)0.0048 (8)0.0106 (10)0.0014 (8)
C40.0539 (15)0.0325 (12)0.0774 (19)0.0084 (10)0.0061 (13)0.0040 (11)
C50.0551 (15)0.0598 (15)0.0319 (11)0.0207 (12)0.0052 (10)0.0029 (10)
C60.0646 (16)0.0399 (12)0.0477 (13)0.0152 (11)0.0249 (12)0.0067 (10)
Geometric parameters (Å, º) top
Sn—O52.0781 (15)N—C31.496 (2)
Sn—O12.0980 (13)N—C61.500 (3)
Sn—O22.1025 (13)C1—C21.557 (2)
Sn—Cl22.3598 (5)C3—H3A0.9800
Sn—Cl12.3627 (5)C3—H3B0.9800
Sn—Cl32.3926 (5)C3—H3C0.9800
O5—H50B0.850 (17)C4—H4A0.9800
O5—H50A0.859 (17)C4—H4B0.9800
O1—C11.285 (2)C4—H4C0.9800
O3—C11.219 (2)C5—H5A0.9800
O4—C21.223 (2)C5—H5B0.9800
O2—C21.288 (2)C5—H5C0.9800
O6—H60B0.836 (17)C6—H6A0.9800
O6—H60A0.836 (17)C6—H6B0.9800
N—C41.488 (3)C6—H6C0.9800
N—C51.490 (3)
O5—Sn—O184.67 (6)O1—C1—C2115.63 (15)
O5—Sn—O282.02 (6)O4—C2—O2126.11 (16)
O1—Sn—O279.11 (5)O4—C2—C1118.03 (16)
O5—Sn—Cl291.33 (5)O2—C2—C1115.85 (15)
O1—Sn—Cl2170.93 (4)N—C3—H3A109.5
O2—Sn—Cl292.30 (4)N—C3—H3B109.5
O5—Sn—Cl190.68 (4)H3A—C3—H3B109.5
O1—Sn—Cl189.50 (4)N—C3—H3C109.5
O2—Sn—Cl1166.95 (4)H3A—C3—H3C109.5
Cl2—Sn—Cl198.70 (2)H3B—C3—H3C109.5
O5—Sn—Cl3170.75 (5)N—C4—H4A109.5
O1—Sn—Cl388.93 (4)N—C4—H4B109.5
O2—Sn—Cl390.23 (4)H4A—C4—H4B109.5
Cl2—Sn—Cl394.03 (2)N—C4—H4C109.5
Cl1—Sn—Cl395.95 (2)H4A—C4—H4C109.5
Sn—O5—H50B121 (2)H4B—C4—H4C109.5
Sn—O5—H50A125 (2)N—C5—H5A109.5
H50B—O5—H50A113 (3)N—C5—H5B109.5
C1—O1—Sn114.77 (11)H5A—C5—H5B109.5
C2—O2—Sn114.29 (11)N—C5—H5C109.5
H60B—O6—H60A107 (3)H5A—C5—H5C109.5
C4—N—C5109.4 (2)H5B—C5—H5C109.5
C4—N—C3109.18 (18)N—C6—H6A109.5
C5—N—C3110.24 (17)N—C6—H6B109.5
C4—N—C6109.2 (2)H6A—C6—H6B109.5
C5—N—C6109.25 (18)N—C6—H6C109.5
C3—N—C6109.49 (16)H6A—C6—H6C109.5
O3—C1—O1124.90 (16)H6B—C6—H6C109.5
O3—C1—C2119.47 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H50A···O60.86 (2)1.66 (2)2.511 (2)173 (3)
O5—H50B···O4i0.85 (2)1.78 (2)2.6120 (19)168 (3)
O6—H60B···O3ii0.84 (2)1.99 (2)2.792 (2)160 (3)
O6—H60A···O3iii0.84 (2)1.95 (2)2.7840 (19)172 (3)
O6—H60B···O4ii0.84 (2)2.47 (3)2.993 (2)122 (3)
C6—H6B···O6i0.982.543.411 (3)148
C6—H6A···Cl3iv0.982.913.762 (3)146
Symmetry codes: (i) x+2, y, z+1; (ii) x1, y, z; (iii) x+2, y, z+2; (iv) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H50A···O60.859 (17)1.657 (18)2.511 (2)173 (3)
O5—H50B···O4i0.850 (17)1.775 (18)2.6120 (19)168 (3)
O6—H60B···O3ii0.836 (17)1.99 (2)2.792 (2)160 (3)
O6—H60A···O3iii0.836 (17)1.954 (18)2.7840 (19)172 (3)
O6—H60B···O4ii0.836 (17)2.47 (3)2.993 (2)122 (3)
C6—H6B···O6i0.982.543.411 (3)147.7
C6—H6A···Cl3iv0.982.913.762 (3)146.3
Symmetry codes: (i) x+2, y, z+1; (ii) x1, y, z; (iii) x+2, y, z+2; (iv) x, y, z1.
references
References top

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Blessing, R. H. (1995). Acta Cryst. A51, 33–38.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Fernandez, D., Garcia-Seijo, M. I., Kegl, T., Petocz, G., Kollar, L. & Garcia-Fernandez, M. E. (2002). Inorg. Chem. 41, 4435–4443.

Hausen, H.-D., Schwarz, W., Ragca, G. & Weidlein, J. (1986). Z. Naturforsch. Teil B, 41, 1223–1229.

Hazell, A., Khoo, L. E., Ouyang, J., Rausch, B. J. & Tavares, Z. M. (1998). Acta Cryst. C54, 728–732.

Koutsantonis, G. A., Morien, T. S., Skelton, B. W. & White, A. H. (2003). Acta Cryst. C59, m361–m365.

Mahon, M. F., Moldovan, N. L., Molloy, K. C., Muresan, A., Silaghi-Dumitrescu, I. & Silaghi-Dumitrescu, L. (2004). J. Chem. Soc. Dalton Trans. 23, 4017–4021.

Ng, S. W. & Kumar Das, V. G. (1993). Main Group Met. Chem. 16, 87–93.

Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Patt-Siebel, U., Ruangsuttinarupap, S., Müller, U., Pebler, J. & Dehnicke, K. (1986). Z. Naturforsch. Teil B, 41, 1191–1195.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sow, Y., Diop, L., Kociock-Köhn, G. & Molloy, K. C. (2010). Main Group Met. Chem. 33, 205–207.

Szymanska-Buzar, T., Glowiak, T. & Czelusnuak, I. (2001). Main Group Met. Chem. 24, 821–822.

Tudela, D. V., Fernadez, V., Tomero, J. D. & Vegas, A. (1986). Z. Anorg. Allg. Chem. 532, 215–224.

Xu, T., Yang, S.-Y., Xie, Z.-X. & Ng, S. W. (2003). Acta Cryst. E59, m873–m875.