[Journal logo]

Volume 69 
Part 2 
Pages i11-i12  
February 2013  

Received 18 December 2012
Accepted 15 January 2013
Online 19 January 2013

Key indicators
Single-crystal X-ray study
T = 290 K
Mean [sigma](V-O) = 0.002 Å
R = 0.024
wR = 0.062
Data-to-parameter ratio = 11.2
Details
Open access

Reinvestigation of trilithium divanadium(III) tris(orthophosphate), Li3V2(PO4)3, based on single-crystal X-ray data

aDivision of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 443-749, Republic of Korea
Correspondence e-mail: hsyun@ajou.ac.kr

The structure of Li3V2(PO4)3 has been reinvestigated from single-crystal X-ray data. Although the results of the previous studies (all based on powder diffraction data) are comparable with our redetermination, all atoms were refined with anisotropic displacement parameters in the current study, and the resulting bond lengths are more accurate than those determined from powder diffraction data. The title compound adopts the Li3Fe2(PO4)3 structure type. The structure is composed of VO6 octahedra and PO4 tetrahedra by sharing O atoms to form the three-dimensional anionic framework [infinity]3[V2(PO4)3]3-. The positions of the Li+ ions in the empty channels can vary depending on the synthetic conditions. Bond-valence-sum calculations showed structures that are similar to the results of the present study seem to be more stable compared with others. The classical charge balance of the title compound can be represented as [Li+]3[V3+]2[P5+]3[O2-]12.

Related literature

For the isotypic Li3Fe2(PO4)3 structure, see: Patoux et al. (2003[Patoux, S., Wurm, C., Morcrette, M., Rousse, G. & Masquelier, C. (2003). J. Power Sources, 119, 278-284.]). Structural studies of Li3V2(PO4)3 based on powder diffraction data have been reported previously by Yin et al. (2003[Yin, S. C., Grondey, H., Strobel, P., Anne, M. & Nazar, L. F. (2003). J. Am. Chem. Soc. 125, 10402-10411.]); Patoux et al. (2003[Patoux, S., Wurm, C., Morcrette, M., Rousse, G. & Masquelier, C. (2003). J. Power Sources, 119, 278-284.]); Kuo et al. (2008[Kuo, H. T., Bagkar, N. C., Liu, R.-S., Shen, C. H., Shy, D. S., Xing, X. K., Lee, J.-F. & Chen, J.-M. (2008). J. Phys. Chem. B, 112, 11250-11257.]); Yang et al. (2010[Yang, G., Ji, H. M., Liu, H., Qian, B. & Jiang, X. (2010). Electrochim. Acta, 55, 3669-3680.]); Fu et al. (2010[Fu, P., Zhao, Y., Dong, Y. & Hou, X. (2010). J. Phys. Chem. Solids, 71, 394-399.]). For ionic radii, see: Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). For bond-valence calculations, see: Adams (2001[Adams, St. (2001). Acta Cryst. B57, 278-287.]). For the Inorganic Crystal Structure Database, see: ICSD (2012[ICSD (2012). Inorganic Crystal Structure Database. FIZ-Karlsruhe, Germany. http://www.fiz-karlsruhe.de/fiz/products/icsd/welcome .html]).

Experimental

Crystal data
  • Li3V2(PO4)3

  • Mr = 407.61

  • Monoclinic, P 21 /c

  • a = 8.6201 (4) Å

  • b = 8.6013 (4) Å

  • c = 14.7465 (7) Å

  • [beta] = 125.204 (3)°

  • V = 893.39 (7) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 2.70 mm-1

  • T = 290 K

  • 0.08 × 0.04 × 0.04 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.741, Tmax = 1.000

  • 8328 measured reflections

  • 2031 independent reflections

  • 1772 reflections with I > 2[sigma](I)

  • Rint = 0.031

Refinement
  • R[F2 > 2[sigma](F2)] = 0.024

  • wR(F2) = 0.062

  • S = 1.08

  • 2031 reflections

  • 181 parameters

  • [Delta][rho]max = 0.58 e Å-3

  • [Delta][rho]min = -0.49 e Å-3

Table 1
Selected bond lengths (Å)

Li1-O4 1.930 (6)
Li1-O5 1.940 (6)
Li1-O3i 2.094 (6)
Li1-O10ii 2.215 (6)
Li2-O3 1.968 (6)
Li2-O1 1.974 (6)
Li2-O7 2.004 (6)
Li2-O9 2.153 (7)
Li3-O6 1.944 (5)
Li3-O10 1.946 (5)
Li3-O11 1.994 (5)
Li3-O9 2.014 (6)
V1-O2 1.9040 (19)
V1-O8 1.954 (2)
V1-O1i 2.0163 (19)
V1-O7 2.0168 (18)
V1-O5 2.0450 (18)
V1-O3i 2.1172 (18)
V2-O12iii 1.9099 (19)
V2-O6 1.9810 (18)
V2-O4 2.0012 (18)
V2-O11 2.0316 (18)
V2-O10ii 2.0343 (19)
V2-O9ii 2.0618 (18)
P1-O2iv 1.5199 (19)
P1-O4v 1.5297 (19)
P1-O1 1.5310 (19)
P1-O6 1.5400 (18)
P2-O8vi 1.492 (2)
P2-O9 1.5419 (19)
P2-O7 1.5458 (18)
P2-O10ii 1.5497 (19)
P3-O12 1.5101 (19)
P3-O11 1.5343 (19)
P3-O5vii 1.5454 (19)
P3-O3ii 1.5506 (18)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) -x, -y+1, -z; (vi) -x+1, -y+1, -z+1; (vii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2716 ).


Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (grant No. 2011-0011309).

References

Adams, St. (2001). Acta Cryst. B57, 278-287.  [ISI] [CrossRef] [ChemPort] [details]
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Fu, P., Zhao, Y., Dong, Y. & Hou, X. (2010). J. Phys. Chem. Solids, 71, 394-399.  [ISI] [CrossRef] [ChemPort]
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
ICSD (2012). Inorganic Crystal Structure Database. FIZ-Karlsruhe, Germany. http://www.fiz-karlsruhe.de/fiz/products/icsd/welcome .html
Kuo, H. T., Bagkar, N. C., Liu, R.-S., Shen, C. H., Shy, D. S., Xing, X. K., Lee, J.-F. & Chen, J.-M. (2008). J. Phys. Chem. B, 112, 11250-11257.  [CrossRef] [PubMed] [ChemPort]
Patoux, S., Wurm, C., Morcrette, M., Rousse, G. & Masquelier, C. (2003). J. Power Sources, 119, 278-284.  [ISI] [CrossRef]
Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.  [CrossRef] [details]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Yang, G., Ji, H. M., Liu, H., Qian, B. & Jiang, X. (2010). Electrochim. Acta, 55, 3669-3680.  [ISI] [CrossRef] [ChemPort]
Yin, S. C., Grondey, H., Strobel, P., Anne, M. & Nazar, L. F. (2003). J. Am. Chem. Soc. 125, 10402-10411.  [ISI] [CrossRef] [PubMed] [ChemPort]


Acta Cryst (2013). E69, i11-i12   [ doi:10.1107/S1600536813001499 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.