supplementary materials


wm2721 scheme

Acta Cryst. (2013). E69, m129-m130    [ doi:10.1107/S1600536813002183 ]

Bis(3-aminopyrazine-2-carboxylato-[kappa]2N1,O)diaquacobalt(II)

R. Bouchene, S. Bouacida, F. Berrah, R. Belhouas and H. Merazig

Abstract top

In the title compound, [Co(C5H4N3O2)2(H2O)2], the CoII atom is situated on a twofold rotation axis and is N,O-chelated by two 3-aminopyrazine-2-carboxylate anions and additionally bonded to the O atoms of two water molecules, leading to a slightly distorted octahedral coordination environment. The crystal packing is dominated by intermolecular O-H...O, O-H...N and N-H...O hydrogen bonding involving the water molecules and amino groups as donors and carboxylate O atoms, as well as the non-coordinating heterocyclic N atoms as acceptors, resulting in a three-dimensional network. An intramolecular N-H...O hydrogen bond is also observed.

Comment top

During our recent research in the field of N,O-donor stabilized metal complexes we have prepared the title compound. As ligand we have chosen pyrazine-2-carboxylate that already has been extensively studied (Alcock et al., 1996; Dong et al., 2000; Kubota et al., 2006; Luo et al., 2004; Shi et al., 2011; Fan et al., 2007; Liu et al., 2007). Some of its cobalt(II) complexes have also been reported for multitude applications (Tanase et al., 2006; Sun et al., 2004; McCleverty & Meyer, 2004).

In continuation of our investigations on the influence of hydrogen bonds on the structural features (Bouacida et al., 2007,2009), we report here the crystal growth and crystal structure of the title compound, [Co(C5H4N3O2)2(H2O)2] (I).

The asymmetric unit of (I) consists of one-half of the complex molecule, with the other half being generated by a twofold rotation axis running through the CoII atom (Wyckoff site 4 e). The latter is octahedrally coordinated by two 3-aminopyrazine-2-carboxylate anions acting in a bidentate manner and by two water molecules. The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1.

Bond lengths and angles observed in the different entities show normal features and are consistent with those reported previously for related systems (Shi et al., 2011). Fig. 2 shows a packing diagram of the structure. Parallel to the c axis channels with a square cross-section are formed. The crystal packing can be described by stacking of alternating layers parallel to (110). The layers are linked together by O1W—H···N, O1W—H···O and N—H···O interactions involving the water molecules and amino functions as donors and carboxylate O atoms as well as the non-coordinating heterocyclic N atoms as acceptors (Fig. 3, Table 1). These interactions lead to the formation of a three-dimensional network.

Related literature top

For the role of N,O-coordination in the crystal structures of metal complexes with pyrazine-2-carboxylate as ligand, see: Alcock et al. (1996); Dong et al. (2000); Kubota et al. (2006); Luo et al. (2004). For related pyrazine-2-carboxylate cobalt(II) complexes and their applications, see: Fan et al. (2007); Liu et al. (2007); McCleverty & Meyer (2004); Shi et al. (2011); Sun et al. (2004); Tanase et al. (2006). For the influence of hydrogen bonding in related systems, see: Bouacida et al. (2007, 2009).

Experimental top

The title compound was obtained from a mixture of cobalt(II) chloride hexahydrate (0.05 g, 0.2 mmol), 3-aminopyrazine-2-carboxylic acid (0.03 g, 0.2 mmol) and acidified water (25 ml, HCl 37%). The solution was evaporated at room temperature for two weeks. Yellow single crystals were obtained and were carefully isolated under a polarizing microscope for analysis by X-ray diffraction.

Refinement top

The H atoms were localized in Fourier maps but were eventually introduced in calculated positions and treated as riding on their parent atoms (C or N) with C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N). The water H atoms H1W and H2W were also located in a difference Fourier map. Their positions were refined freely, but their temperature factors were refined isotropically with Uiso(H) = 1.5Ueq(OW).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the coordination environment of the CoII atom of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius. [Symmetry code: (i)-x, y, -z + 3/2.]
[Figure 2] Fig. 2. The packing of the structure of (I) viewed along the c axis
[Figure 3] Fig. 3. Hydrogen bonding interactions (dashed lines) in the structure of (I)
Bis(3-aminopyrazine-2-carboxylato-κ2N1,O)diaquacobalt(II) top
Crystal data top
[Co(C5H4N3O2)2(H2O)2]F(000) = 756
Mr = 371.19Dx = 1.794 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 7.8823 (2) ÅCell parameters from 6448 reflections
b = 12.7467 (2) Åθ = 3.0–38.7°
c = 13.6851 (3) ŵ = 1.29 mm1
β = 91.918 (1)°T = 295 K
V = 1374.22 (5) Å3Block, yellow
Z = 40.11 × 0.09 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
3043 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.041
Graphite monochromatorθmax = 42.1°, θmin = 3.0°
φ and ω scansh = 1410
17706 measured reflectionsk = 2422
4800 independent reflectionsl = 2516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0413P)2]
where P = (Fo2 + 2Fc2)/3
4800 reflections(Δ/σ)max = 0.001
111 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Co(C5H4N3O2)2(H2O)2]V = 1374.22 (5) Å3
Mr = 371.19Z = 4
Monoclinic, C2/cMo Kα radiation
a = 7.8823 (2) ŵ = 1.29 mm1
b = 12.7467 (2) ÅT = 295 K
c = 13.6851 (3) Å0.11 × 0.09 × 0.05 mm
β = 91.918 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3043 reflections with I > 2σ(I)
17706 measured reflectionsRint = 0.041
4800 independent reflectionsθmax = 42.1°
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082Δρmax = 0.48 e Å3
S = 0.92Δρmin = 0.38 e Å3
4800 reflectionsAbsolute structure: ?
111 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co100.195326 (13)0.750.02207 (5)
O1W0.19025 (11)0.30652 (6)0.76033 (6)0.03609 (17)
H1W0.250 (2)0.3194 (11)0.7195 (13)0.054*
H2W0.1779 (19)0.3585 (14)0.7867 (12)0.054*
O510.18087 (10)0.07591 (6)0.76347 (5)0.03603 (17)
O520.31276 (13)0.02336 (7)0.87118 (6)0.0538 (2)
N10.03120 (10)0.18853 (6)0.90389 (5)0.02230 (13)
N20.09937 (11)0.16410 (8)1.09943 (6)0.03211 (17)
C10.04090 (12)0.25148 (8)0.97172 (6)0.02822 (18)
H10.11640.30350.95350.034*
N30.26554 (13)0.02032 (8)1.06349 (7)0.0453 (2)
H3A0.28270.01381.12490.054*
H3B0.31120.02321.02240.054*
C20.00267 (13)0.23880 (9)1.06893 (7)0.0327 (2)
H20.05080.28471.11480.039*
C30.16811 (12)0.09790 (7)1.03189 (7)0.02792 (18)
C40.13532 (11)0.11308 (7)0.93095 (6)0.02309 (15)
C50.21616 (13)0.04957 (8)0.84893 (7)0.03098 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02920 (9)0.02103 (9)0.01636 (7)00.00654 (5)0
O1W0.0437 (4)0.0371 (4)0.0284 (3)0.0159 (3)0.0152 (3)0.0072 (3)
O510.0514 (4)0.0342 (4)0.0230 (3)0.0146 (3)0.0090 (3)0.0052 (3)
O520.0808 (6)0.0417 (5)0.0405 (4)0.0356 (4)0.0263 (4)0.0128 (4)
N10.0249 (3)0.0230 (3)0.0193 (3)0.0009 (3)0.0057 (2)0.0015 (2)
N20.0378 (4)0.0383 (4)0.0207 (3)0.0010 (4)0.0071 (3)0.0019 (3)
C10.0285 (4)0.0338 (5)0.0225 (4)0.0058 (4)0.0025 (3)0.0005 (3)
N30.0686 (7)0.0378 (5)0.0307 (4)0.0167 (5)0.0196 (4)0.0032 (4)
C30.0343 (4)0.0259 (4)0.0242 (4)0.0031 (3)0.0112 (3)0.0041 (3)
C50.0410 (5)0.0242 (4)0.0284 (4)0.0072 (4)0.0117 (4)0.0050 (3)
C40.0285 (4)0.0202 (4)0.0210 (3)0.0010 (3)0.0083 (3)0.0014 (3)
C20.0348 (5)0.0411 (6)0.0221 (4)0.0031 (4)0.0007 (3)0.0024 (4)
Geometric parameters (Å, º) top
Co1—O1W2.0648 (8)N1—C11.3390 (11)
Co1—O1Wi2.0648 (8)N2—C21.3230 (14)
Co1—O512.0979 (7)N2—C31.3515 (13)
Co1—O51i2.0979 (7)C1—C21.3834 (13)
Co1—N1i2.1303 (7)C1—H10.93
Co1—N12.1303 (7)N3—C31.3329 (13)
O1W—H1W0.760 (18)N3—H3A0.86
O1W—H2W0.763 (18)N3—H3B0.86
O51—C51.2568 (12)C3—C41.4270 (12)
O52—C51.2460 (12)C5—C41.5078 (13)
N1—C41.3252 (11)C2—H20.93
O1W—Co1—O1Wi93.31 (5)C1—N1—Co1126.91 (6)
O1W—Co1—O51170.46 (3)C2—N2—C3117.88 (8)
O1Wi—Co1—O5190.57 (4)N1—C1—C2119.71 (9)
O1W—Co1—O51i90.57 (4)N1—C1—H1120.1
O1Wi—Co1—O51i170.46 (3)C2—C1—H1120.1
O51—Co1—O51i86.97 (5)C3—N3—H3A120
O1W—Co1—N1i89.31 (3)C3—N3—H3B120
O1Wi—Co1—N1i93.89 (3)H3A—N3—H3B120
O51—Co1—N1i99.13 (3)N3—C3—N2117.61 (8)
O51i—Co1—N1i77.43 (3)N3—C3—C4122.66 (9)
O1W—Co1—N193.89 (3)N2—C3—C4119.73 (8)
O1Wi—Co1—N189.31 (3)O52—C5—O51125.65 (9)
O51—Co1—N177.43 (3)O52—C5—C4117.72 (8)
O51i—Co1—N199.13 (3)O51—C5—C4116.63 (8)
N1i—Co1—N1175.34 (4)N1—C4—C3120.19 (8)
Co1—O1W—H1W124.2 (12)N1—C4—C5115.59 (7)
Co1—O1W—H2W121.7 (11)C3—C4—C5124.20 (8)
H1W—O1W—H2W104.7 (15)N2—C2—C1122.81 (9)
C5—O51—Co1116.60 (6)N2—C2—H2118.6
C4—N1—C1119.58 (7)C1—C2—H2118.6
C4—N1—Co1113.50 (6)
O1Wi—Co1—O51—C593.84 (8)Co1—O51—C5—O52175.74 (10)
O51i—Co1—O51—C595.39 (8)Co1—O51—C5—C44.97 (12)
N1i—Co1—O51—C5172.13 (8)C1—N1—C4—C31.05 (13)
N1—Co1—O51—C54.67 (7)Co1—N1—C4—C3179.46 (6)
O1W—Co1—N1—C4172.54 (6)C1—N1—C4—C5177.36 (8)
O1Wi—Co1—N1—C494.19 (6)Co1—N1—C4—C52.13 (10)
O51—Co1—N1—C43.45 (6)N3—C3—C4—N1176.88 (9)
O51i—Co1—N1—C481.34 (6)N2—C3—C4—N13.34 (13)
O1W—Co1—N1—C18.01 (8)N3—C3—C4—C54.85 (15)
O1Wi—Co1—N1—C185.25 (8)N2—C3—C4—C5174.93 (9)
O51—Co1—N1—C1175.99 (8)O52—C5—C4—N1178.82 (10)
O51i—Co1—N1—C199.22 (8)O51—C5—C4—N11.84 (13)
C4—N1—C1—C21.63 (14)O52—C5—C4—C32.84 (15)
Co1—N1—C1—C2177.78 (7)O51—C5—C4—C3176.50 (9)
C2—N2—C3—N3177.46 (9)C3—N2—C2—C10.07 (16)
C2—N2—C3—C42.76 (14)N1—C1—C2—N22.23 (16)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N2ii0.761 (18)2.070 (18)2.8254 (12)172.2 (17)
O1W—H2W···O52iii0.762 (18)1.898 (17)2.6470 (12)167.1 (16)
N3—H3A···O51iv0.862.333.0525 (12)141
N3—H3B···O520.862.072.7036 (13)130
C1—H1···O52iii0.932.553.4010 (13)153
Symmetry codes: (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z; (iv) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N2i0.761 (18)2.070 (18)2.8254 (12)172.2 (17)
O1W—H2W···O52ii0.762 (18)1.898 (17)2.6470 (12)167.1 (16)
N3—H3A···O51iii0.86002.33003.0525 (12)141.00
N3—H3B···O520.86002.07002.7036 (13)130.00
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z; (iii) x, y, z+1/2.
Acknowledgements top

We are grateful to the personal of the LCATM laboratory, Université Oum El Bouaghi, Algeria, for their assistance. Thanks are due to the MESRS and ATRST (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence thématique de recherche en sciences et technologie - Algérie) via the PNR programm for financial support.

references
References top

Alcock, N. W., Kemp, T. J., Marc Roe, S. & Leciejewicz, J. (1996). Inorg. Chim. Acta, 248, 241–246.

Bouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628–o629.

Bouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379–m381.

Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.

Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.

Dong, Y.-B., Smith, M. D. & zur Loye, H.-C. (2000). Inorg. Chem. 39, 1943–1949.

Fan, G., Chen, S.-P. & Gao, S.-L. (2007). Acta Cryst. E63, m772–m773.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Kubota, Y., Takata, M., Matsuda, R., Kitaura, R., Kitagawa, S. & Kobayashi, T. C. (2006). Angew. Chem. Int. Ed. 45, 4932–4936.

Liu, F.-Y., Shang, R.-L., Du, L., Zhao, Q.-H. & Fang, R.-B. (2007). Acta Cryst. E63, m120–m122.

Luo, J., Alexander, B., Wagner, T. R. & Maggard, P. A. (2004). Inorg. Chem. 43, 5537–5542.

McCleverty, J. A. & Meyer, T. J. (2004). Comprehensive Coordination Chemistry II. From Biology to Nanotechnology, Vol. 6, Transition Metal Groups 9–12pp. 99–120. Amsterdam?: Elsevier Pergamon.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shi, Q.-Y., Zhang, G.-C., Zhou, C.-S. & Yang, Q. (2011). Acta Cryst. E67, m1430.

Sun, W.-H., Tang, X., Gao, T., Wu, B., Zhang, W. & Ma, H. (2004). Organometallics, 23, 5037–5041.

Tanase, S., Martin, V. S., Van Albada, G. A., DeGelder, R., Bouwman, E. & Reedijk, J. (2006). Polyhedron, 25, 2967–2975.