organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-2,2′-Dihy­dr­oxy-N,N′-(6-hy­dr­oxy­hexane-1,5-di­yl)dibenzamide

aFachrichtung Chemie, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany
*Correspondence e-mail: hegetschweiler@mx.uni-saarland.de

(Received 13 December 2012; accepted 4 January 2013; online 12 January 2013)

In the title compound, C20H24N2O5, the dihedral angle between the two roughly planar salicyl­amide fragments [r.m.s. deviations = 0.043 (2) and 0.149 (2) Å] is 25.50 (5)°. The mol­ecular conformation is stabilized by intra­molecular O—H⋯O hydrogen bonds involving phenol –OH groups and amide O atoms. Inter­molecular hy­droxy­meth­yl–amide O—H⋯O and amine–hy­droxy­methyl N—H⋯O hydrogen bonds form infinite chains along the b axis. These chains are further inter­linked by amine–amide N—H⋯O and phenol–phenol O—H⋯O inter­actions, thus giving layers parallel to (001).

Related literature

For the isolation and physico-chemical properties of myxochelin A, see: Kunze et al. (1989[Kunze, B., Bedorf, N., Kohl, W., Höfle, G. & Reichenbach, H. (1989). J. Antibiot. 42, 14-17.]). For the crystal structure of N,N′-(pentane-1,5-di­yl)bis­(3-meth­oxy­salicyl­amide), see: Huang et al. (1995[Huang, S.-P., Franz, K. J., Olmstead, M. M. & Fish, R. H. (1995). Inorg. Chem. 34, 2820-2825.]). For metal complex formation with linear bis-catechol amides and linear bis-salicyl­amides, see: Duhme et al. (1996[Duhme, A.-K., Dauter, Z., Hider, R. C. & Pohl, S. (1996). Inorg. Chem. 35, 3059-3061.]); Huang et al. (1995[Huang, S.-P., Franz, K. J., Olmstead, M. M. & Fish, R. H. (1995). Inorg. Chem. 34, 2820-2825.]); Cappillino et al. (2009[Cappillino, P. J., Tarves, P. C., Rowe, G. T., Lewis, A. J., Harvey, M., Rogge, C., Stassinopoulos, A., Lo, W., Armstrong, W. H. & Caradonna, J. P. (2009). Inorg. Chim. Acta, 362, 2136-2150.]); Stoicescu et al. (2009[Stoicescu, L., Duhayon, C., Vendier, L., Tesouro-Vallina, A., Costes, J.-P. & Tuchagues, J.-P. (2009). Eur. J. Inorg. Chem. pp. 5483-5493.]). For the treatment of H atoms in SHELXL, see: Müller et al. (2006[Müller, P., Herbst-Irmer, R., Spek, A. L., Schneider, T. R. & Sawaya, M. R. (2006). In Crystal Structure Refinement - A Crystallographer's Guide to SHELXL. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24N2O5

  • Mr = 372.41

  • Monoclinic, P 21

  • a = 9.5934 (7) Å

  • b = 9.2266 (7) Å

  • c = 10.3565 (7) Å

  • β = 96.172 (4)°

  • V = 911.39 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 123 K

  • 0.26 × 0.21 × 0.04 mm

Data collection
  • Bruker Nonius X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.996

  • 10366 measured reflections

  • 2111 independent reflections

  • 1943 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.076

  • S = 1.05

  • 2111 reflections

  • 259 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6O⋯O7 0.88 (2) 1.70 (2) 2.530 (2) 155 (3)
N8—H8N⋯O14i 0.87 (2) 2.21 (2) 3.051 (2) 163 (2)
O14—H14O⋯O16ii 0.85 (2) 2.03 (2) 2.858 (2) 165 (3)
N15—H15N⋯O7iii 0.86 (2) 2.25 (2) 3.046 (2) 154 (2)
O22—H22O⋯O16 0.84 (2) 1.95 (2) 2.648 (2) 140 (3)
O22—H22O⋯O6iv 0.84 (2) 2.19 (2) 2.776 (2) 127 (2)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) [-x, y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Myxochelin A ((S)-N,N'-(6-hydroxyhexane-1,5-diyl)bis(2,3-dihydroxybenzamide)) belongs to the family of siderophores (Kunze et al., 1989) and is well known for its selective complex formation with iron(III). In a neutral medium, metal binding probably occurs via the two catecholate groups (Huang et al., 1995; Duhme et al., 1996). However, myxochelin A also forms stable ferric complexes in an acidic medium around pH 2–3. Under such conditions, a complete deprotonation of all four phenolic hydroxy groups is unfavourable and, alternatively, metal binding may rather occur in a bis-bidentate fashion via the two ortho-hydroxy-benzamide moieties (Cappillino et al., 2009; Stoicescu et al., 2009). For a direct investigation of such a coordination mode, we prepared dideoxy-myxochelin A as a model ligand and report here its crystal structure. The structure elucidation of a related achiral derivative, which is devoid of the hydroxymethyl group, has been reported by Huang et al. (1995).

The crystal structure of the title compound exhibits an all-staggered zigzag arrangement of the O14—C14—C13—C12—C11—C10—C9 chain with corresponding torsional angles of 172–179°. With regard to this chain, the two ortho-hydroxybenzamide moieties adopt a gauche conformation with C—C—C—N torsional angles of 54.2 (2) and -63.9 (2)°. The two phenyl rings are aligned roughly parallel (the angle between the two mean planes is 23°). Inspection of interatomic distances revealed, however, that the interaction between the two aromatic moieties should be interpreted in terms of simple van der Waals contacts rather than ππ stacking. The amide groups and the corresponding phenyl rings are almost, but not fully, coplanar. The angle between the mean planes defined by C1–C6 and N8, C7, O7, C1 or C17–C22 and N15, C16, O16, C17 is 5° or 19°, respectively. Both aromatic hydroxy groups are involved in intramolecular O—H···O(carbonyl) hydrogen bonding, forming a six-membered ring structure which is quite often observed for salicylamides. Additionally, the aliphatic hydroxy group (O14) donates its proton to the carbonyl O atom O16 of a neighbour, and the amide moiety N8—H8N donates its proton to a further aliphatic hydroxy group (O14). The two types of interactions occur along 21 screws and result in the formation of infinite chains, aligned parallel to the crystallographic b axis. Interlinking of these chains occurs via N15—H15N···O7 bonding. In addition, H22O is bifurcated; beside the above-mentioned intramolecular O22—H22O···O16 bond, an intermolecular O22—H22O···O6 bond generates further interlinking along the crystallographic a axis. Altogether, the various types of intermolecular hydrogen bonding interactions resulted in the generation of layers, oriented parallel to the ab plane. Between these layers, only weak van der Waals contacts can be observed.

Related literature top

For the isolation and physico-chemical properties of myxochelin A, see: Kunze et al. (1989). For the crystal structure of N,N'-(pentane-1,5-diyl)bis(3-methoxysalicylamide), see: Huang et al. (1995). For metal complex formation with linear bis-catechol amides and linear bis-salicylamides, see: Duhme et al. (1996); Huang et al. (1995); Cappillino et al. (2009); Stoicescu et al. (2009). For the treatment of H atoms in SHELXL, see: Müller et al. (2006).

Experimental top

2-Hydroxybenzoic acid was allowed to react with benzyl bromide in acetone yielding 2-benzyloxy-benzoic acid, which was further transformed into (S)-2,6-bis(2-benzoxybenzamido)-hexan-1-ol in a two-step procedure, using thionyl chloride and subsequently (S)-2,6-diaminohexan-1-ol. The protecting benzoxy groups were then removed with ammonium formate and Pd/C. Off-white single crystals were grown from MeOH. Elemental analysis calculated for C20H24N2O5 (%): C 64.50, H 6.50, N 7.52; found (%): C 64.19, H 6.35, N 7.50. 1H NMR (DMSO-d6): δ (p.p.m.) = 1.38 (m, 2H), 1.62 (m, 4H), 3.30 (dt, 2H), 3.48 (m, 2H), 4.04 (m, 1H), 6.89 (m, 4H), 7.40 (m, 2H), 7.84 (dd, 1H), 7.94 (dd, 1H), 8.47 (d, NH), 8.85 (t, NH). 13C NMR (DMSO-d6): δ (p.p.m.) = 23.1, 28.7, 30.1, 38.8, 51.0, 62.9, 115.0, 115.4, 117.2, 117.3, 118.3, 127.4, 127.9, 133.4, 133.5, 160.0, 160.2.

Refinement top

In accordance with the use of the chiral and enantiomerically pure (S)-2,6-diaminohexan-1-ol as one of the starting materials, the title compound crystallized in a Sohncke space group. The structure contains, however, only H, C, N and O atoms and an assignment of an absolute structure was thus not possible. Therefore, a total of 1572 Friedel pairs were merged prior to the refinement and the S-configuration of the diaminohexanol was adopted to the title compound. All H atoms could be located. They were treated as recommended by Müller et al. (2006); a riding model was used for H(—C) atoms. The positional parameters of the O- and N-bonded H atoms were refined using isotropic displacement parameters, which were set to 1.5Ueq or 1.2Ueq of the pivotal O or N atom, respectively. In addition, restraints of 0.84 and 0.88 Å were used for the O—H and N—H distances.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot (50% probability level) and numbering scheme of the title compound.
[Figure 2] Fig. 2. Section of a strand generated by a 21 screw (with intra- and intermolecular hydrogen bonds shown as green and black dashed lines, respectively); interlinking of such strands by additional N—H···O(amide) and O(phenolic)—H···O(phenolic) hydrogen bonding is indicated by yellow dashed lines. C atoms (black) are shown as a stick model; O (red), N (blue), H(—O) and H(—N) atoms are shown as spheres of arbitrary size. H(—C) atoms are omitted for clarity.
(S)-2,2'-Dihydroxy-N,N'-(6-hydroxyhexane- 1,5-diyl)dibenzamide top
Crystal data top
C20H24N2O5F(000) = 396
Mr = 372.41Dx = 1.357 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4681 reflections
a = 9.5934 (7) Åθ = 2.8–29.3°
b = 9.2266 (7) ŵ = 0.10 mm1
c = 10.3565 (7) ÅT = 123 K
β = 96.172 (4)°Prism, light brown
V = 911.39 (11) Å30.26 × 0.21 × 0.04 mm
Z = 2
Data collection top
Bruker Nonius X8 APEX
diffractometer
2111 independent reflections
Radiation source: fine-focus sealed tube1943 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.4 pixels mm-1θmax = 27.0°, θmin = 2.0°
ϕ and ω scansh = 1211
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
k = 119
Tmin = 0.975, Tmax = 0.996l = 1313
10366 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.1259P]
where P = (Fo2 + 2Fc2)/3
2111 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.21 e Å3
6 restraintsΔρmin = 0.22 e Å3
Crystal data top
C20H24N2O5V = 911.39 (11) Å3
Mr = 372.41Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.5934 (7) ŵ = 0.10 mm1
b = 9.2266 (7) ÅT = 123 K
c = 10.3565 (7) Å0.26 × 0.21 × 0.04 mm
β = 96.172 (4)°
Data collection top
Bruker Nonius X8 APEX
diffractometer
2111 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
1943 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.996Rint = 0.028
10366 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0316 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.21 e Å3
2111 reflectionsΔρmin = 0.22 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4529 (2)0.4184 (2)0.20414 (18)0.0199 (4)
C20.3185 (2)0.4340 (2)0.13843 (19)0.0258 (5)
H20.24370.37680.16370.031*
C30.2930 (2)0.5314 (3)0.0374 (2)0.0313 (5)
H30.20120.54100.00620.038*
C40.4021 (2)0.6157 (3)0.0004 (2)0.0288 (5)
H40.38410.68320.06940.035*
C50.5358 (2)0.6018 (3)0.06145 (19)0.0254 (5)
H50.60980.65940.03520.030*
C60.5621 (2)0.5026 (2)0.16297 (19)0.0210 (4)
O60.69536 (15)0.49364 (19)0.22033 (15)0.0296 (4)
H6O0.685 (3)0.441 (3)0.290 (2)0.044*
C70.4830 (2)0.3244 (2)0.32048 (18)0.0203 (4)
O70.60410 (15)0.32025 (17)0.38085 (14)0.0273 (4)
N80.37834 (19)0.2474 (2)0.36263 (16)0.0230 (4)
H8N0.2929 (18)0.259 (3)0.325 (2)0.028*
C90.3912 (2)0.1825 (3)0.4921 (2)0.0284 (5)
H9A0.48370.13450.50910.034*
H9B0.31780.10780.49600.034*
C100.3766 (2)0.2972 (2)0.59675 (19)0.0259 (5)
H10A0.37780.24900.68230.031*
H10B0.45770.36400.60090.031*
C110.2419 (2)0.3837 (2)0.56963 (19)0.0228 (4)
H11A0.16200.31530.55930.027*
H11B0.24400.43550.48610.027*
C120.2160 (2)0.4936 (2)0.67388 (18)0.0213 (4)
H12A0.30070.55450.69320.026*
H12B0.19940.44170.75450.026*
C130.0901 (2)0.5910 (2)0.63192 (18)0.0192 (4)
H130.00720.52770.60590.023*
C140.0553 (2)0.6883 (2)0.74253 (18)0.0225 (4)
H14A0.03680.62700.81730.027*
H14B0.13770.74970.77030.027*
O140.06297 (15)0.77953 (17)0.70901 (14)0.0272 (4)
H14O0.044 (3)0.857 (2)0.672 (2)0.041*
N150.11840 (17)0.6788 (2)0.51866 (15)0.0194 (4)
H15N0.187 (2)0.739 (2)0.527 (2)0.023*
C160.06071 (19)0.6524 (2)0.39742 (18)0.0185 (4)
O160.02958 (14)0.55555 (16)0.37353 (13)0.0234 (3)
C170.1056 (2)0.7449 (2)0.29126 (18)0.0191 (4)
C180.2307 (2)0.8247 (2)0.30504 (19)0.0245 (5)
H180.28990.81950.38460.029*
C190.2701 (2)0.9106 (3)0.2062 (2)0.0290 (5)
H190.35600.96270.21740.035*
C200.1832 (2)0.9204 (3)0.09003 (19)0.0288 (5)
H200.20860.98110.02230.035*
C210.0605 (2)0.8422 (3)0.07330 (19)0.0259 (5)
H210.00180.84910.00640.031*
C220.0211 (2)0.7531 (2)0.17155 (18)0.0213 (4)
O220.10130 (15)0.68092 (19)0.14603 (14)0.0306 (4)
H22O0.115 (3)0.621 (3)0.204 (2)0.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0203 (10)0.0213 (10)0.0184 (9)0.0025 (8)0.0027 (7)0.0035 (8)
C20.0206 (10)0.0316 (13)0.0246 (10)0.0007 (9)0.0001 (8)0.0035 (10)
C30.0202 (10)0.0467 (15)0.0256 (11)0.0020 (10)0.0033 (8)0.0057 (10)
C40.0328 (12)0.0306 (12)0.0227 (10)0.0027 (10)0.0012 (9)0.0049 (9)
C50.0249 (11)0.0276 (12)0.0241 (10)0.0028 (9)0.0053 (8)0.0003 (9)
C60.0199 (9)0.0229 (10)0.0199 (9)0.0021 (8)0.0006 (7)0.0051 (9)
O60.0168 (7)0.0382 (9)0.0329 (8)0.0023 (7)0.0016 (6)0.0053 (7)
C70.0210 (10)0.0190 (10)0.0207 (9)0.0047 (8)0.0017 (8)0.0044 (8)
O70.0210 (8)0.0343 (9)0.0260 (7)0.0070 (7)0.0007 (6)0.0038 (7)
N80.0239 (9)0.0221 (9)0.0228 (8)0.0022 (8)0.0006 (7)0.0003 (7)
C90.0353 (12)0.0225 (11)0.0278 (10)0.0058 (10)0.0053 (9)0.0068 (9)
C100.0295 (11)0.0254 (12)0.0224 (10)0.0040 (9)0.0017 (8)0.0058 (9)
C110.0214 (10)0.0231 (11)0.0238 (10)0.0014 (9)0.0015 (8)0.0003 (9)
C120.0213 (10)0.0224 (10)0.0200 (10)0.0026 (9)0.0008 (8)0.0019 (8)
C130.0171 (9)0.0217 (11)0.0187 (9)0.0023 (8)0.0016 (7)0.0033 (8)
C140.0220 (10)0.0261 (11)0.0194 (9)0.0018 (9)0.0020 (8)0.0047 (9)
O140.0233 (8)0.0274 (9)0.0313 (8)0.0060 (7)0.0049 (6)0.0075 (7)
N150.0190 (8)0.0212 (9)0.0173 (8)0.0061 (7)0.0009 (6)0.0013 (7)
C160.0161 (9)0.0184 (10)0.0206 (9)0.0031 (8)0.0005 (7)0.0001 (8)
O160.0216 (7)0.0227 (7)0.0247 (7)0.0053 (6)0.0028 (6)0.0004 (6)
C170.0200 (10)0.0194 (10)0.0178 (9)0.0023 (8)0.0020 (7)0.0025 (8)
C180.0213 (10)0.0324 (12)0.0191 (9)0.0033 (9)0.0017 (8)0.0026 (9)
C190.0263 (11)0.0345 (13)0.0268 (10)0.0073 (10)0.0058 (9)0.0010 (10)
C200.0314 (12)0.0329 (12)0.0232 (10)0.0024 (10)0.0083 (9)0.0074 (10)
C210.0263 (11)0.0338 (12)0.0171 (9)0.0079 (10)0.0003 (8)0.0018 (9)
C220.0178 (9)0.0251 (11)0.0204 (9)0.0018 (8)0.0003 (7)0.0032 (9)
O220.0285 (8)0.0389 (9)0.0223 (7)0.0099 (7)0.0060 (6)0.0021 (7)
Geometric parameters (Å, º) top
C1—C21.399 (3)C12—C131.531 (3)
C1—C61.406 (3)C12—H12A0.9900
C1—C71.488 (3)C12—H12B0.9900
C2—C31.381 (3)C13—N151.475 (2)
C2—H20.9500C13—C141.521 (3)
C3—C41.394 (3)C13—H131.0000
C3—H30.9500C14—O141.425 (2)
C4—C51.377 (3)C14—H14A0.9900
C4—H40.9500C14—H14B0.9900
C5—C61.396 (3)O14—H14O0.846 (18)
C5—H50.9500N15—C161.339 (2)
C6—O61.353 (2)N15—H15N0.858 (16)
O6—H6O0.882 (17)C16—O161.251 (2)
C7—O71.259 (2)C16—C171.492 (3)
C7—N81.341 (3)C17—C181.402 (3)
N8—C91.462 (3)C17—C221.408 (3)
N8—H8N0.874 (16)C18—C191.379 (3)
C9—C101.532 (3)C18—H180.9500
C9—H9A0.9900C19—C201.391 (3)
C9—H9B0.9900C19—H190.9500
C10—C111.519 (3)C20—C211.376 (3)
C10—H10A0.9900C20—H200.9500
C10—H10B0.9900C21—C221.392 (3)
C11—C121.521 (3)C21—H210.9500
C11—H11A0.9900C22—O221.351 (2)
C11—H11B0.9900O22—H22O0.838 (18)
C2—C1—C6118.24 (18)C11—C12—H12A109.2
C2—C1—C7122.86 (18)C13—C12—H12A109.2
C6—C1—C7118.77 (17)C11—C12—H12B109.2
C3—C2—C1120.9 (2)C13—C12—H12B109.2
C3—C2—H2119.5H12A—C12—H12B107.9
C1—C2—H2119.5N15—C13—C14110.40 (17)
C2—C3—C4119.94 (19)N15—C13—C12109.94 (15)
C2—C3—H3120.0C14—C13—C12111.31 (15)
C4—C3—H3120.0N15—C13—H13108.4
C5—C4—C3120.5 (2)C14—C13—H13108.4
C5—C4—H4119.8C12—C13—H13108.4
C3—C4—H4119.8O14—C14—C13113.51 (15)
C4—C5—C6119.7 (2)O14—C14—H14A108.9
C4—C5—H5120.2C13—C14—H14A108.9
C6—C5—H5120.2O14—C14—H14B108.9
O6—C6—C5117.14 (18)C13—C14—H14B108.9
O6—C6—C1122.18 (18)H14A—C14—H14B107.7
C5—C6—C1120.67 (18)C14—O14—H14O114.1 (18)
C6—O6—H6O102.2 (17)C16—N15—C13123.58 (17)
O7—C7—N8120.36 (18)C16—N15—H15N116.8 (15)
O7—C7—C1120.57 (18)C13—N15—H15N118.5 (15)
N8—C7—C1119.04 (17)O16—C16—N15121.54 (18)
C7—N8—C9121.54 (18)O16—C16—C17120.79 (17)
C7—N8—H8N119.3 (16)N15—C16—C17117.65 (17)
C9—N8—H8N116.1 (16)C18—C17—C22117.82 (18)
N8—C9—C10111.17 (18)C18—C17—C16122.51 (16)
N8—C9—H9A109.4C22—C17—C16119.67 (17)
C10—C9—H9A109.4C19—C18—C17121.74 (18)
N8—C9—H9B109.4C19—C18—H18119.1
C10—C9—H9B109.4C17—C18—H18119.1
H9A—C9—H9B108.0C18—C19—C20119.5 (2)
C11—C10—C9111.91 (17)C18—C19—H19120.2
C11—C10—H10A109.2C20—C19—H19120.2
C9—C10—H10A109.2C21—C20—C19120.0 (2)
C11—C10—H10B109.2C21—C20—H20120.0
C9—C10—H10B109.2C19—C20—H20120.0
H10A—C10—H10B107.9C20—C21—C22120.90 (18)
C10—C11—C12114.81 (16)C20—C21—H21119.5
C10—C11—H11A108.6C22—C21—H21119.5
C12—C11—H11A108.6O22—C22—C21116.52 (17)
C10—C11—H11B108.6O22—C22—C17123.48 (18)
C12—C11—H11B108.6C21—C22—C17119.97 (19)
H11A—C11—H11B107.5C22—O22—H22O112.6 (19)
C11—C12—C13111.96 (16)
C6—C1—C2—C31.2 (3)C11—C12—C13—C14173.46 (16)
C7—C1—C2—C3174.6 (2)N15—C13—C14—O1458.6 (2)
C1—C2—C3—C40.1 (3)C12—C13—C14—O14178.98 (16)
C2—C3—C4—C50.6 (4)C14—C13—N15—C16131.63 (19)
C3—C4—C5—C60.1 (3)C12—C13—N15—C16105.2 (2)
C4—C5—C6—O6179.9 (2)C13—N15—C16—O164.9 (3)
C4—C5—C6—C11.0 (3)C13—N15—C16—C17176.42 (17)
C2—C1—C6—O6179.51 (19)O16—C16—C17—C18161.58 (19)
C7—C1—C6—O64.5 (3)N15—C16—C17—C1819.7 (3)
C2—C1—C6—C51.7 (3)O16—C16—C17—C2217.9 (3)
C7—C1—C6—C5174.34 (18)N15—C16—C17—C22160.80 (19)
C2—C1—C7—O7175.9 (2)C22—C17—C18—C191.0 (3)
C6—C1—C7—O70.0 (3)C16—C17—C18—C19179.5 (2)
C2—C1—C7—N82.1 (3)C17—C18—C19—C200.8 (3)
C6—C1—C7—N8177.93 (19)C18—C19—C20—C211.5 (3)
O7—C7—N8—C913.5 (3)C19—C20—C21—C220.2 (3)
C1—C7—N8—C9164.46 (18)C20—C21—C22—O22179.86 (19)
C7—N8—C9—C1075.7 (2)C20—C21—C22—C171.6 (3)
N8—C9—C10—C1154.2 (2)C18—C17—C22—O22179.7 (2)
C9—C10—C11—C12176.49 (17)C16—C17—C22—O220.2 (3)
C10—C11—C12—C13172.07 (17)C18—C17—C22—C212.2 (3)
C11—C12—C13—N1563.9 (2)C16—C17—C22—C21178.28 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···O70.88 (2)1.70 (2)2.530 (2)155 (3)
N8—H8N···O14i0.87 (2)2.21 (2)3.051 (2)163 (2)
O14—H14O···O16ii0.85 (2)2.03 (2)2.858 (2)165 (3)
N15—H15N···O7iii0.86 (2)2.25 (2)3.046 (2)154 (2)
O22—H22O···O160.84 (2)1.95 (2)2.648 (2)140 (3)
O22—H22O···O6iv0.84 (2)2.19 (2)2.776 (2)127 (2)
Symmetry codes: (i) x, y1/2, z+1; (ii) x, y+1/2, z+1; (iii) x+1, y+1/2, z+1; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC20H24N2O5
Mr372.41
Crystal system, space groupMonoclinic, P21
Temperature (K)123
a, b, c (Å)9.5934 (7), 9.2266 (7), 10.3565 (7)
β (°) 96.172 (4)
V3)911.39 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.26 × 0.21 × 0.04
Data collection
DiffractometerBruker Nonius X8 APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2010)
Tmin, Tmax0.975, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
10366, 2111, 1943
Rint0.028
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.076, 1.05
No. of reflections2111
No. of parameters259
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···O70.882 (17)1.70 (2)2.530 (2)155 (3)
N8—H8N···O14i0.874 (16)2.205 (17)3.051 (2)163 (2)
O14—H14O···O16ii0.846 (18)2.031 (19)2.858 (2)165 (3)
N15—H15N···O7iii0.858 (16)2.254 (17)3.046 (2)154 (2)
O22—H22O···O160.838 (18)1.95 (2)2.648 (2)140 (3)
O22—H22O···O6iv0.838 (18)2.19 (2)2.776 (2)127 (2)
Symmetry codes: (i) x, y1/2, z+1; (ii) x, y+1/2, z+1; (iii) x+1, y+1/2, z+1; (iv) x1, y, z.
 

Acknowledgements

The authors thank Dr Volker Huch (Universität des Saarlandes) for the collection of the data set.

References

First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCappillino, P. J., Tarves, P. C., Rowe, G. T., Lewis, A. J., Harvey, M., Rogge, C., Stassinopoulos, A., Lo, W., Armstrong, W. H. & Caradonna, J. P. (2009). Inorg. Chim. Acta, 362, 2136–2150.  Web of Science CSD CrossRef CAS Google Scholar
First citationDuhme, A.-K., Dauter, Z., Hider, R. C. & Pohl, S. (1996). Inorg. Chem. 35, 3059–3061.  CSD CrossRef CAS Web of Science Google Scholar
First citationHuang, S.-P., Franz, K. J., Olmstead, M. M. & Fish, R. H. (1995). Inorg. Chem. 34, 2820–2825.  CSD CrossRef CAS Web of Science Google Scholar
First citationKunze, B., Bedorf, N., Kohl, W., Höfle, G. & Reichenbach, H. (1989). J. Antibiot. 42, 14–17.  CrossRef CAS PubMed Google Scholar
First citationMüller, P., Herbst-Irmer, R., Spek, A. L., Schneider, T. R. & Sawaya, M. R. (2006). In Crystal Structure Refinement - A Crystallographer's Guide to SHELXL. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoicescu, L., Duhayon, C., Vendier, L., Tesouro-Vallina, A., Costes, J.-P. & Tuchagues, J.-P. (2009). Eur. J. Inorg. Chem. pp. 5483–5493.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds