supplementary materials


zj2099 scheme

Acta Cryst. (2013). E69, m94    [ doi:10.1107/S1600536813000330 ]

Diaquabis(1H-imidazole-4-carboxylato-[kappa]2N3,O)cobalt(II)

B. Artetxe, L. San Felices, A. Pache, S. Reinoso and J. M. Gutiérrez-Zorrilla

Abstract top

The title compound, [Co(C4H3N2O2)2(H2O)2], contains a CoII cation on a twofold rotation axis, exhibiting a distorted octahedral coordination geometry. The equatorial plane is formed by two N,O-bidentate 1H-imidazole-4-carboxylate ligands and the axial positions are occupied by water molecules. The crystal packing consists of a three-dimensional network stabilized by O-H...O and N-H...O hydrogen bonds, together with weak [pi]-[pi] interactions [centroid-centroid distance = 3.577 (2) Å] between the imidazole rings.

Comment top

The title compound, [Co(C4H3N2O2)2(H2O)2] crystallizes in the orthorhombic crystal system, space group Pccn, and it is isostructural with the zinc and cadmium complexes previously reported by Yin et al. (2009) and Shuai et al. (2011). As expected, the Co—O and Co—N distances (Table 1) are similar to those of the ZnII analogue and shorter than those of the CdII derivative. Table 2 summarizes the geometrical parameters of the O—H···O and N—H···O hydrogen bonding interactions. The centroid-to-centroid distance between interacting imidazole rings is 3.577 (2) Å.

Related literature top

For the isostructural zinc(II) and cadmium(II) complexes, see: Yin et al. (2009); Shuai et al. (2011). For related homoleptic compounds, see: Kondo et al. (2003); Gryz et al. (2007); Zheng et al. (2011).

Experimental top

To a solution of CoCl2.6H2O (12 mg, 0.05 mmol) in 15 ml of water 4-imidazole carboxylic acid (6 mg, 0.05 mmol) was added and the resulting solution was stirred for 30 min at room temperature. Prismatic red crystals were obtained by slow evaporation after several days. IR (cm-1): 3148 (s), 2934 (s), 1685 (m), 1588 (vs), 1555 (vs), 1528 (s), 1462 (s), 1406 (vs), 1333 (m), 1234 (s), 1177 (m), 1101 (m), 1005 (m), 930 (m), 845 (m), 820 (m), 791 (m), 731 (w), 658 (s), 610 (m), 492 (m).

Refinement top

All atoms except H were refined anisotropically. H atoms of the water molecule were located in a Fourier difference map and refined isotropically with O—H bond lengths restrained to 0.84 (2) Å. All imidazole H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of [Co(C4H3N2O2)2(H2O)2] showing atom labelling for the asymmetric unit and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of the crystal packing along the crystallographic a axis (hydrogen bonds represented as dashed lines).
(I) top
Crystal data top
[Co(C4H3N2O2)2(H2O)2]F(000) = 644
Mr = 317.13Dx = 1.876 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 1055 reflections
a = 7.1236 (16) Åθ = 1.8–28.1°
b = 11.6305 (2) ŵ = 1.56 mm1
c = 13.5496 (4) ÅT = 100 K
V = 1122.6 (3) Å3Prism, red
Z = 40.09 × 0.04 × 0.03 mm
Data collection top
Agilent SuperNova (single source at offset)
diffractometer
1162 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1025 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 16.2439 pixels mm-1θmax = 26.5°, θmin = 3.0°
ω scansh = 87
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1014
Tmin = 0.947, Tmax = 1.000l = 517
2396 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: difference Fourier map
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0201P)2 + 1.0008P]
where P = (Fo2 + 2Fc2)/3
1162 reflections(Δ/σ)max < 0.001
95 parametersΔρmax = 0.32 e Å3
2 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Co(C4H3N2O2)2(H2O)2]V = 1122.6 (3) Å3
Mr = 317.13Z = 4
Orthorhombic, PccnMo Kα radiation
a = 7.1236 (16) ŵ = 1.56 mm1
b = 11.6305 (2) ÅT = 100 K
c = 13.5496 (4) Å0.09 × 0.04 × 0.03 mm
Data collection top
Agilent SuperNova (single source at offset)
diffractometer
1162 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1025 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 1.000Rint = 0.018
2396 measured reflectionsθmax = 26.5°
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063Δρmax = 0.32 e Å3
S = 1.08Δρmin = 0.25 e Å3
1162 reflectionsAbsolute structure: ?
95 parametersFlack parameter: ?
2 restraintsRogers parameter: ?
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.750.250.13009 (3)0.00874 (13)
O1W0.8972 (2)0.09575 (13)0.15593 (11)0.0140 (3)
O10.54278 (18)0.17114 (12)0.22690 (10)0.0120 (3)
O20.26134 (18)0.08371 (12)0.22474 (10)0.0113 (3)
N30.5553 (2)0.18870 (15)0.02894 (12)0.0107 (4)
N10.3584 (2)0.12877 (15)0.08496 (13)0.0125 (4)
H10.30940.11570.14350.015*
C40.4058 (3)0.13338 (17)0.07356 (15)0.0098 (4)
C60.4028 (3)0.12899 (16)0.18291 (15)0.0096 (4)
C50.2836 (3)0.09571 (18)0.00325 (15)0.0118 (4)
H50.16970.05490.01360.014*
C20.5204 (3)0.18489 (18)0.06678 (15)0.0123 (4)
H20.59890.21730.11620.015*
H1WA1.007 (3)0.099 (3)0.180 (2)0.047 (9)*
H1WB0.847 (4)0.050 (2)0.1974 (17)0.039 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0080 (2)0.0098 (2)0.0084 (2)0.00165 (15)00
O1W0.0110 (8)0.0146 (8)0.0163 (8)0.0018 (6)0.0014 (7)0.0039 (7)
O10.0102 (7)0.0140 (7)0.0116 (7)0.0016 (6)0.0011 (6)0.0008 (6)
O20.0087 (7)0.0137 (7)0.0116 (7)0.0007 (6)0.0021 (6)0.0019 (6)
N30.0095 (8)0.0111 (9)0.0115 (8)0.0003 (7)0.0013 (7)0.0009 (7)
N10.0130 (9)0.0151 (9)0.0094 (8)0.0007 (7)0.0031 (7)0.0005 (7)
C40.0101 (10)0.0072 (10)0.0120 (10)0.0000 (8)0.0007 (8)0.0006 (8)
C60.0105 (10)0.0071 (9)0.0113 (10)0.0041 (8)0.0009 (8)0.0000 (8)
C50.0122 (10)0.0113 (10)0.0118 (9)0.0007 (8)0.0012 (9)0.0001 (9)
C20.0121 (10)0.0137 (11)0.0111 (10)0.0008 (8)0.0005 (8)0.0009 (9)
Geometric parameters (Å, º) top
Co1—N32.0763 (17)N3—C21.321 (3)
Co1—N3i2.0763 (17)N3—C41.383 (2)
Co1—O1Wi2.1074 (15)N1—C21.349 (3)
Co1—O1W2.1074 (15)N1—C51.364 (3)
Co1—O1i2.1774 (14)N1—H10.88
Co1—O12.1774 (14)C4—C51.363 (3)
O1W—H1WA0.849 (17)C4—C61.483 (3)
O1W—H1WB0.853 (17)C5—H50.95
O1—C61.261 (2)C2—H20.95
O2—C61.271 (2)
N3—Co1—N3i97.39 (9)C2—N3—C4105.60 (17)
N3—Co1—O1Wi93.98 (6)C2—N3—Co1141.72 (15)
N3i—Co1—O1Wi98.62 (6)C4—N3—Co1112.67 (13)
N3—Co1—O1W98.62 (6)C2—N1—C5108.11 (17)
N3i—Co1—O1W93.98 (6)C2—N1—H1125.9
O1Wi—Co1—O1W160.87 (9)C5—N1—H1125.9
N3—Co1—O1i174.42 (6)C5—C4—N3109.62 (18)
N3i—Co1—O1i78.47 (6)C5—C4—C6132.70 (18)
O1Wi—Co1—O1i83.04 (6)N3—C4—C6117.64 (17)
O1W—Co1—O1i85.47 (6)O1—C6—O2125.27 (18)
N3—Co1—O178.47 (6)O1—C6—C4116.60 (17)
N3i—Co1—O1174.42 (6)O2—C6—C4118.13 (17)
O1Wi—Co1—O185.47 (6)C4—C5—N1105.79 (17)
O1W—Co1—O183.04 (6)C4—C5—H5127.1
O1i—Co1—O1105.91 (7)N1—C5—H5127.1
Co1—O1W—H1WA119 (2)N3—C2—N1110.87 (18)
Co1—O1W—H1WB115.7 (19)N3—C2—H2124.6
H1WA—O1W—H1WB100 (3)N1—C2—H2124.6
C6—O1—Co1114.52 (12)
N3—Co1—O1—C61.93 (13)Co1—N3—C4—C5179.84 (13)
N3i—Co1—O1—C644.3 (6)C2—N3—C4—C6177.35 (18)
O1Wi—Co1—O1—C693.08 (13)Co1—N3—C4—C61.8 (2)
O1W—Co1—O1—C6102.24 (13)Co1—O1—C6—O2176.57 (15)
O1i—Co1—O1—C6174.51 (15)Co1—O1—C6—C43.4 (2)
N3i—Co1—N3—C25.2 (2)C5—C4—C6—O1178.9 (2)
O1Wi—Co1—N3—C294.1 (2)N3—C4—C6—O13.6 (3)
O1W—Co1—N3—C2100.4 (2)C5—C4—C6—O21.1 (3)
O1i—Co1—N3—C236.6 (7)N3—C4—C6—O2176.37 (17)
O1—Co1—N3—C2178.6 (2)N3—C4—C5—N10.3 (2)
N3i—Co1—N3—C4176.15 (16)C6—C4—C5—N1177.4 (2)
O1Wi—Co1—N3—C484.61 (14)C2—N1—C5—C40.2 (2)
O1W—Co1—N3—C480.96 (14)C4—N3—C2—N10.8 (2)
O1i—Co1—N3—C4142.1 (6)Co1—N3—C2—N1179.56 (16)
O1—Co1—N3—C40.06 (13)C5—N1—C2—N30.7 (2)
C2—N3—C4—C50.7 (2)
Symmetry code: (i) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.881.892.766 (2)172
O1W—H1WA···O2iii0.86 (2)1.91 (2)2.760 (2)171 (3)
O1W—H1WB···O2iv0.85 (2)1.98 (2)2.812 (2)167 (2)
Symmetry codes: (ii) x+1/2, y, z1/2; (iii) x+1, y, z; (iv) x+1/2, y, z+1/2.
Selected geometric parameters (Å, º) top
Co1—N32.0763 (17)Co1—O12.1774 (14)
Co1—O1W2.1074 (15)
N3—Co1—N3i97.39 (9)N3—Co1—O178.47 (6)
N3—Co1—O1W98.62 (6)O1W—Co1—O183.04 (6)
Symmetry code: (i) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.881.892.766 (2)172
O1W—H1WA···O2iii0.86 (2)1.91 (2)2.760 (2)171 (3)
O1W—H1WB···O2iv0.85 (2)1.98 (2)2.812 (2)167 (2)
Symmetry codes: (ii) x+1/2, y, z1/2; (iii) x+1, y, z; (iv) x+1/2, y, z+1/2.
Acknowledgements top

This work was financially supported by Eusko Jaurlaritza/Gobierno Vasco (grant Nos. IT477-10 and S-PE11UN062) and the Universidad de País Vasco UPV/EHU (grant No. UFI11/53). BA and AP thank EJ/GV for their predoctoral fellowships.

references
References top

Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Gryz, M., Starosta, W. & Leciejewicz, J. (2007). J. Coord. Chem. 60, 539–546.

Kondo, M., Shimizu, E., Horiba, T., Tanaka, H., Fuwa, Y., Nabari, K., Unoura, K., Naito, T., Maeda, K. & Uchida, H. (2003). Chem. Lett. 32, 944–945.

Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shuai, W., Cai, S. & Zheng, S. (2011). Acta Cryst. E67, m897.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Yin, W.-P., Li, Y.-G., Mei, X.-L. & Yao, J.-C. (2009). Chin. J. Struct. Chem. 28, 1155–1159.

Zheng, S., Cai, S., Fan, J. & Zhang, W. (2011). Acta Cryst. E67, m865.