[Journal logo]

Volume 69 
Part 2 
Page o310  
February 2013  

Received 13 January 2013
Accepted 23 January 2013
Online 31 January 2013

Key indicators
Single-crystal X-ray study
T = 130 K
Mean [sigma](C-C) = 0.002 Å
R = 0.042
wR = 0.107
Data-to-parameter ratio = 13.8
Details
Open access

A second monoclinic polymorph of (E)-phenyl(pyridin-2-yl)methanone oxime

aInstituto de Química, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria, México, DF, 04510, Mexico, and bFacultad de Química, Universidad Autónoma de México, México D. F., 04510, Mexico
Correspondence e-mail: rrm@uaem.mx

The title compound, C12H10N2O, a second monoclinic polymorph of (E)-phenyl(pyridin-2-yl)methanone oxime crystallizes in the space group P21/n (Z = 4). The previously reported polymorph [Taga et al. (1990[Taga, T., Uchiyama, A., Machida, K. & Miyasaka, T. (1990). Acta Cryst. C46, 2241-2243.]). Acta Cryst. C46, 2241-2243] occurs in the space group C2/c (Z = 8). In the crystal, pairs of bifurcated O-H...(N,O) hydrogen bonds link the molecules into inversion dimers. The dimers are linked by C-H...[pi] interactions, forming a linear arrangement. The dihedral angle between the pyridine and phenyl rings is 67.70 (8)°.

Related literature

For properties of oximes, see: Custot et al. (1996[Custot, J., Boucher, J.-L., Vadon, S., Guedes, C., Dijols, S., Delaforge, M. & Mansuy, D. (1996). J. Biol. Inorg. Chem. 1, 73-82.]); Turner & Ciufolini (2011[Turner, C. D. & Ciufolini, M. A. (2011). Arkivoc, i, 410-428.]); Abele et al. (2003[Abele, E., Abele, R. & Lukevics, E. (2003). Chem. Heterocycl. Compd, 7, 825-865.]). For the use of complexes of pyridyl oximes with a variety of transition metals in supramolecular and materials chemistry, see: Shokrollahi et al. (2008[Shokrollahi, A., Ghaedi, M., Rajabi, H. R. & Niband, M. S. (2008). Spectrochim. Acta Part A, 71, 655-662.]); Martinez et al. (2008[Martinez, J., Aiello, I., Bellusci, A., Crispini, A. & Ghedini, M. (2008). Inorg. Chim. Acta, 361, 2677-2682.]). For the previously reported polymorph, see: Taga et al. (1990[Taga, T., Uchiyama, A., Machida, K. & Miyasaka, T. (1990). Acta Cryst. C46, 2241-2243.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O

  • Mr = 198.22

  • Monoclinic, P 21 /n

  • a = 5.6732 (4) Å

  • b = 23.257 (2) Å

  • c = 7.4516 (5) Å

  • [beta] = 97.743 (7)°

  • V = 974.21 (13) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.09 mm-1

  • T = 130 K

  • 0.55 × 0.31 × 0.06 mm

Data collection
  • Agilent Xcalibur (Atlas, Gemini) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2011)[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.], based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.976, Tmax = 0.995

  • 4256 measured reflections

  • 1918 independent reflections

  • 1559 reflections with I > 2[sigma](I)

  • Rint = 0.023

Refinement
  • R[F2 > 2[sigma](F2)] = 0.042

  • wR(F2) = 0.107

  • S = 1.04

  • 1918 reflections

  • 139 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.21 e Å-3

  • [Delta][rho]min = -0.22 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1-C6 ring.

D-H...A D-H H...A D...A D-H...A
O1-H1D...N2i 0.88 (2) 1.93 (2) 2.7696 (17) 159 (2)
O1-H1D...O1i 0.88 (2) 2.61 (2) 3.225 (2) 127 (2)
C11-H11...Cgii 0.95 2.78 3.5453 (18) 139
Symmetry codes: (i) -x, -y, -z+2; (ii) x+1, y, z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2100 ).


Acknowledgements

RRM (postdoctoral agreement No. 290586 UNAM) would like to thank CONACYT for scholarships. The financial support of this research by CONACYT (CB2010-154732) and DGAPA-UNAM (IN201711) is gratefully acknowledged.

References

Abele, E., Abele, R. & Lukevics, E. (2003). Chem. Heterocycl. Compd, 7, 825-865.  [CrossRef]
Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.  [CrossRef] [details]
Custot, J., Boucher, J.-L., Vadon, S., Guedes, C., Dijols, S., Delaforge, M. & Mansuy, D. (1996). J. Biol. Inorg. Chem. 1, 73-82.  [CrossRef] [ChemPort]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Martinez, J., Aiello, I., Bellusci, A., Crispini, A. & Ghedini, M. (2008). Inorg. Chim. Acta, 361, 2677-2682.  [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Shokrollahi, A., Ghaedi, M., Rajabi, H. R. & Niband, M. S. (2008). Spectrochim. Acta Part A, 71, 655-662.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [details]
Taga, T., Uchiyama, A., Machida, K. & Miyasaka, T. (1990). Acta Cryst. C46, 2241-2243.  [CrossRef] [details]
Turner, C. D. & Ciufolini, M. A. (2011). Arkivoc, i, 410-428.


Acta Cryst (2013). E69, o310  [ doi:10.1107/S1600536813002377 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.