[Journal logo]

Volume 69 
Part 2 
Pages m81-m82  
February 2013  

Received 26 November 2012
Accepted 18 December 2012
Online 9 January 2013

Key indicators
Single-crystal X-ray study
T = 120 K
Mean [sigma](C-C) = 0.006 Å
Disorder in solvent or counterion
R = 0.045
wR = 0.102
Data-to-parameter ratio = 11.6
Details
Open access

[mu]-2,3,5,6-Tetrakis(pyridin-2-yl)pyrazine-bis[(2,2':6',2''-terpyridine)ruthenium(II)] tetrakis(hexafluoridophosphate) acetonitrile tetrasolvate

aLos Alamos National Laboratory, MPA Division, Los Alamos, NM 87545, USA
Correspondence e-mail: rcrocha@lanl.gov

In the title compound [Ru2(C15H11N3)2(C24H16N6)](PF6)4·4CH3CN, two of the counter-ions and one of the solvent molecules are disordered with occupancies for the major components between 0.57 (2) and 0.64 (1). The structure of the dinuclear tetracation exhibits significant distortion from planarity in the bridging 2,3,5,6-tetrakis(pyridin-2-yl)pyrazine (tppz) ligand, which has a saddle-like geometry with an average dihedral angle of 42.96 (18)° between adjacent pyridine rings. The metal-ligand coordination environment is nearly equivalent for the two RuII atoms, which have a distorted octahedral geometry due to the restricted bite angle [157.57 (13)-159.28 (12)°] of their two mer-arranged tridendate ligands [2,2':6',2''-terpyridine (tpy) and tppz] orthogonal to each other. At the peripheral tpy ligands, the average Ru-N bond distance is 2.072 (4) Å for the outer N atoms trans to each other (Nouter) and 1.984 (1) Å for the central N atoms (Ncentral). At the bridging tppz ligand, the average metal-ligand distances are significantly shorter [2.058 (4) Å for Ru-Nouter and 1.965 (1) Å for Ru-Ncentral] as a result of both the geometric constraints and the stronger [pi]-acceptor ability of the pyrazine-centered bridge. The dihedral angle between the two tpy planes is 27.11 (6)°. The intramolecular linear distance between the two Ru atoms is 6.6102 (7) Å.

Related literature

For a previously reported solvent-free structure of this compound, see: Yoshikawa et al. (2011[Yoshikawa, N., Yamabe, S., Kanehisa, N., Inoue, T., Takashima, H. & Tsukahara, K. (2011). J. Phys. Org. Chem. 24, 1110-1118.]). For the crystal structure of a related diruthenium(II) compound containing the {(tpy)Ru(tppz)} moiety, see: Chen et al. (2011[Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2011). Chem. Eur. J. 17, 5595-5604.]). For details of the synthesis, see: Arana & Abruña (1993[Arana, C. R. & Abruña, H. D. (1993). Inorg. Chem. 32, 194-203.]); Rocha et al. (2008[Rocha, R. C., Rein, F. N., Jude, H., Shreve, A. P., Concepcion, J. J. & Meyer, T. J. (2008). Angew. Chem. Int. Ed. 47, 503-506.]); Thummel & Chirayil (1988[Thummel, R. P. & Chirayil, S. (1988). Inorg. Chim. Acta, 154, 77-81.]); Vogler et al. (1996[Vogler, L. M., Jones, S. W., Jensen, G. E., Brewer, R. G. & Brewer, K. J. (1996). Inorg. Chim. Acta, 250, 155-162.]); Wadman et al. (2009[Wadman, S. H., Havenith, R. W. A., Hartl, F., Lutz, M., Spek, A. L., van Klink, G. P. M. & van Koten, G. (2009). Inorg. Chem. 48, 5685-5696.]). For general properties of this compound, see: Arana & Abruña (1993[Arana, C. R. & Abruña, H. D. (1993). Inorg. Chem. 32, 194-203.]); Dattelbaum et al. (2002[Dattelbaum, D. M., Hartshorn, C. M. & Meyer, T. J. (2002). J. Am. Chem. Soc. 124, 4938-4939.]); Flores-Torres et al. (2006[Flores-Torres, S., Hutchison, G. R., Stoltzberg, L. J. & Abruña, H. D. (2006). J. Am. Chem. Soc. 128, 1513-1522.]); Gourdon & Launay (1998[Gourdon, A. & Launay, J.-P. (1998). Inorg. Chem. 37, 5336-5341.]); Jones et al. (1998[Jones, S. W., Vrana, L. M. & Brewer, K. J. (1998). J. Organomet. Chem. 554, 29-40.]); Thummel & Chirayil (1988[Thummel, R. P. & Chirayil, S. (1988). Inorg. Chim. Acta, 154, 77-81.]); Vogler et al. (1996[Vogler, L. M., Jones, S. W., Jensen, G. E., Brewer, R. G. & Brewer, K. J. (1996). Inorg. Chim. Acta, 250, 155-162.]); Wadman et al. (2009[Wadman, S. H., Havenith, R. W. A., Hartl, F., Lutz, M., Spek, A. L., van Klink, G. P. M. & van Koten, G. (2009). Inorg. Chem. 48, 5685-5696.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru2(C15H11N3)2(C24H16N6)](PF6)4·4C2H3N

  • Mr = 1801.20

  • Monoclinic, P 21 /c

  • a = 11.8871 (9) Å

  • b = 31.824 (2) Å

  • c = 18.5168 (14) Å

  • [beta] = 95.880 (1)°

  • V = 6968.0 (9) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.64 mm-1

  • T = 120 K

  • 0.18 × 0.10 × 0.08 mm

Data collection
  • Bruker D8 with APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.893, Tmax = 0.950

  • 67490 measured reflections

  • 12753 independent reflections

  • 8864 reflections with I > 2[sigma](I)

  • Rint = 0.107

Refinement
  • R[F2 > 2[sigma](F2)] = 0.045

  • wR(F2) = 0.102

  • S = 1.10

  • 12753 reflections

  • 1101 parameters

  • 78 restraints

  • H-atom parameters constrained

  • [Delta][rho]max = 0.75 e Å-3

  • [Delta][rho]min = -0.50 e Å-3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX and SAINT-Plus. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX and SAINT-Plus. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2523 ).


Acknowledgements

Support by the US Department of Energy through the Laboratory Directed Research and Development (LDRD) program at LANL is gratefully acknowledged.

References

Arana, C. R. & Abruña, H. D. (1993). Inorg. Chem. 32, 194-203.  [CrossRef] [ChemPort] [ISI]
Bruker (2007). APEX and SAINT-Plus. Bruker AXS, Inc., Madison, Wisconsin, USA.
Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2011). Chem. Eur. J. 17, 5595-5604.  [CSD] [CrossRef] [ChemPort] [PubMed]
Dattelbaum, D. M., Hartshorn, C. M. & Meyer, T. J. (2002). J. Am. Chem. Soc. 124, 4938-4939.  [ISI] [CrossRef] [PubMed] [ChemPort]
Flores-Torres, S., Hutchison, G. R., Stoltzberg, L. J. & Abruña, H. D. (2006). J. Am. Chem. Soc. 128, 1513-1522.  [ISI] [PubMed] [ChemPort]
Gourdon, A. & Launay, J.-P. (1998). Inorg. Chem. 37, 5336-5341.  [ISI] [CrossRef] [ChemPort]
Jones, S. W., Vrana, L. M. & Brewer, K. J. (1998). J. Organomet. Chem. 554, 29-40.  [CrossRef] [ChemPort]
Rocha, R. C., Rein, F. N., Jude, H., Shreve, A. P., Concepcion, J. J. & Meyer, T. J. (2008). Angew. Chem. Int. Ed. 47, 503-506.  [ISI] [CSD] [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Thummel, R. P. & Chirayil, S. (1988). Inorg. Chim. Acta, 154, 77-81.  [CrossRef] [ChemPort] [ISI]
Vogler, L. M., Jones, S. W., Jensen, G. E., Brewer, R. G. & Brewer, K. J. (1996). Inorg. Chim. Acta, 250, 155-162.  [CrossRef] [ChemPort] [ISI]
Wadman, S. H., Havenith, R. W. A., Hartl, F., Lutz, M., Spek, A. L., van Klink, G. P. M. & van Koten, G. (2009). Inorg. Chem. 48, 5685-5696.  [ISI] [CSD] [CrossRef] [ChemPort] [PubMed]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]
Yoshikawa, N., Yamabe, S., Kanehisa, N., Inoue, T., Takashima, H. & Tsukahara, K. (2011). J. Phys. Org. Chem. 24, 1110-1118.  [ISI] [CSD] [CrossRef] [ChemPort]


Acta Cryst (2013). E69, m81-m82   [ doi:10.1107/S1600536812051215 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.