[Journal logo]

Volume 69 
Part 2 
Page o292  
February 2013  

Received 17 January 2013
Accepted 20 January 2013
Online 26 January 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.002 Å
R = 0.045
wR = 0.108
Data-to-parameter ratio = 20.0
Details
Open access

N,N,N',N',N''-Pentamethyl-N''-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate)

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
Correspondence e-mail: Ioannis.Tiritiris@htw-aalen.de

In the crystal structure of the title salt, C12H30N42+·2C24H20B-, the C-N bond lengths in the central CN3 unit of the guanidinium ion are 1.3388 (17), 1.3390 (16) and 1.3540 (17) Å, indicating partial double-bond character in each. The central C atom is bonded to the three N atoms in a nearly ideal trigonal-planar geometry and the positive charge is delocalized in the CN3 plane. The bonds between the N atoms and the terminal C-methyl groups of the guanidinium moiety, all have values close to a typical single bond [1.4630 (16)-1.4697 (17) Å]. C-H...[pi] interactions are present between the guanidinium H atoms and the phenyl C atoms of one tetraphenylborate ion. The phenyl rings form a kind of aromatic pocket, in which the guanidinium ion is embedded.

Related literature

For the synthesis of N''-[3-(dimethylamino)propyl]- N,N,N',N'-tetramethylguanidine, see: Tiritiris & Kantlehner (2012[Tiritiris, I. & Kantlehner, W. (2012). Z. Naturforsch. Teil B, 67, 685-698.]). For the crystal structures of alkali metal tetraphenylborates, see: Behrens et al. (2012[Behrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905-913.]).

[Scheme 1]

Experimental

Crystal data
  • C12H30N4+·2C24H20B-

  • Mr = 868.82

  • Monoclinic, P 21 /c

  • a = 17.7622 (4) Å

  • b = 16.1667 (3) Å

  • c = 17.3787 (4) Å

  • [beta] = 98.045 (1)°

  • V = 4941.29 (18) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.07 mm-1

  • T = 100 K

  • 0.27 × 0.25 × 0.20 mm

Data collection
  • Bruker-Nonius KappaCCD diffractometer

  • 22713 measured reflections

  • 12056 independent reflections

  • 8821 reflections with I > 2[sigma](I)

  • Rint = 0.038

Refinement
  • R[F2 > 2[sigma](F2)] = 0.045

  • wR(F2) = 0.108

  • S = 1.02

  • 12056 reflections

  • 603 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.31 e Å-3

  • [Delta][rho]min = -0.27 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg4, Cg5, Cg6, and Cg8 are the centroids of the C13-C18,C31-C36, C37-C42, C43-C48 and C55-C60 rings, respectively.

D-H...A D-H H...A D...A D-H...A
C3-H3C...Cg7 0.98 2.62 3.3783 (16) 134
C7-H7B...Cg1 0.99 2.80 3.7805 (14) 169
C9-H9B...Cg6 0.99 2.52 3.4075 (14) 149
C11-H11C...Cg5i 0.98 2.62 3.4852 (15) 147
C12-H12A...Cg4 0.98 2.59 3.4044 (15) 141
C12-H12B...Cg8ii 0.98 2.69 3.5990 (15) 155
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2530 ).


Acknowledgements

The author thanks Dr F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for measuring the crystal data.

References

Behrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905-913.  [CSD] [CrossRef] [ChemPort]
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Tiritiris, I. & Kantlehner, W. (2012). Z. Naturforsch. Teil B, 67, 685-698.  [CrossRef] [ChemPort]


Acta Cryst (2013). E69, o292  [ doi:10.1107/S1600536813001992 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.