organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1H-Benzotriazol-1-yl 4-{(E)-[4-(di­methyl­amino)­phen­yl]diazen­yl}benzoate

aLUNAM Université, Université d'Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, CNRS-UMR 6200, 2 bd. Lavoisier, 49045 Angers, France, bInstitute of Solid State Physics, RAS, 142432 Chernogolovka MD, Russian Federation, and cLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, BP 523, 23000 Beni-Mellal, Morocco
*Correspondence e-mail: m.khouili@usms.ma

(Received 21 December 2012; accepted 9 January 2013; online 19 January 2013)

The title compound, C21H18N6O2, was obtained as a by-product of a reaction between (E)-4-(4-dimethyl­amino­phenyl­azo)benzoic acid and 2-amino-4-(2-pyrid­yl)-6-(6-pyrid­yl)-1,3,5-triazine, which has a very low solubility, under peptidic coupling conditions, using THF as solvent. The condensation reaction occurred between 1-hy­droxy­benzotriazole and (E)-4-(4-dimethyl­amino­phenyl­azo)benzoic acid. The dihedral angle between the benzene rings in the (E)-diphenyl­diazene fragment is 10.92 (13)° and that between the benzotriazole mean plane and the central benzene ring is 80.57 (7)°. In the crystal, ππ stacking [centroid–centroid distances = 3.823 (2) and 3.863 (2) Å] of similar fragments generates mol­ecular layers parallel to (0-12). The crystal packing also features weak C—H⋯N hydrogen bonds involving N atoms of the benzotriazole ring.

Related literature

For applications of 1-hy­droxy­benzotriazole in organic syntheses, see: König & Geiger (1970[König, W. & Geiger, R. (1970). Chem. Ber. 103, 788-798.]); Miyazawa et al. (1984[Miyazawa, T., Otomatsu, T., Yamada, T. & Kuwata, S. (1984). Tetrahedron Lett. 25, 771-772.]); Baldini et al. (2008[Baldini, L., Sansone, F., Faimani, G., Massera, C., Casnati, A. & Ungaro, R. (2008). Eur. J. Org. Chem. 5, 869-886.]). For the use of 1-hy­droxy­benzotriazole in the preparation of coordination compounds, see: Papaefstathiou et al. (2002[Papaefstathiou, G. S., Vicente, R., Raptopoulou, C. P., Terzis, A., Escuer, A. & Perlepes, S. P. (2002). Eur. J. Inorg. Chem. 9, 2488-2493.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18N6O2

  • Mr = 386.41

  • Triclinic, [P \overline 1]

  • a = 6.6362 (8) Å

  • b = 11.384 (3) Å

  • c = 13.022 (3) Å

  • α = 99.64 (3)°

  • β = 103.61 (2)°

  • γ = 92.440 (17)°

  • V = 939.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Bruker KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.697, Tmax = 0.746

  • 18381 measured reflections

  • 4288 independent reflections

  • 2107 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.142

  • S = 1.04

  • 4288 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N5i 0.93 2.63 3.415 (3) 142
C23—H23⋯N6ii 0.93 2.63 3.560 (3) 176
Symmetry codes: (i) -x+1, -y, -z+2; (ii) x+1, y, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

1-Hydroxybenzotriazole is a widely used compound in organic syntheses to decrease the racemization in the carbodiimide peptide coupling (König et al., 1970) and especially in racemization-free condensation of aminoacids and peptidic fragments (Miyazawa et al., 1984). It has also been utilized to form a benzotriazolyl active ester (Baldini et al., 2008). Recently 1-hydroxybenzotriazole was used in the preparation of one-dimensional coordination polymers (Papaefstathiou et al., 2002).

The molecular structure of the title compound is shown in Fig. 1. The diphenyldiazene fragment of the molecule is not planar (its benzene rings form a dihedral angle of 10.92 (13) °) and adopts an E conformation about the N2N3 bond. The benzotriazolyl fragment (tautomer A) is essentially planar with an r.m.s. deviation of 0.010 (2) Å and is almost perpendicularly attached to the benzoate ring. The dihedral angles between mean plane of benzotriazolyl and two benzene rings, C3–C8 & C9–C14, are 88.57 (7) ° and 80.57 (7) °, respectively.

In the crystal structure (Fig. 2) π-π stacking of the similar fragments generates molecular layers parallel to (012) [Cg1···Cg2i, 3.823 Å; Cg3···Cg3ii, 3.863 Å; Cg1, Cg2 and Cg3 are the centroids of the C3–C8, C9–C14 and C20–C25 rings, respectively; symmetry codes: (i) 1 + x, y, z; (ii) -3 - x, -1 - y, -1 - z]. Adjacent molecules inside and between the layers are linked additionally by weak C—H···N hydrogen bonds to N-atoms of the benzotriazolyl ring (the shortest H···N distances are 2.63 Å).

Related literature top

For applications of 1-hydroxybenzotriazole in organic syntheses, see: König & Geiger (1970); Miyazawa et al. (1984); Baldini et al. (2008). For the use of 1-hydroxybenzotriazole in the preparation of coordination compounds, see: Papaefstathiou et al. (2002).

Experimental top

The title compound, C21H18N6O2, was obtained as a byproduct of a reaction between (E)-4-(4-dimethylaminophenylazo)benzoic acid and 2-amino-4-(2-pyridyl)-6-(6-pyridyl)-1,3,5-triazine, which is hardly soluble, under peptidic coupling condition. The condensation reaction has occurred between 1-hydroxybenzotriazole and (E)-4-(4-dimethylaminophenylazo)benzoic acid.

Refinement top

Hydrogen atoms were located in a difference electron density map and refined in a riding model (including free rotation for methyl groups), with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a–axis. Hydrogen C—H···N bonds are shown as dashed lines.
1H-Benzotriazol-1-yl 4-{(E)-[4-(dimethylamino)phenyl]diazenyl}benzoate top
Crystal data top
C21H18N6O2Z = 2
Mr = 386.41F(000) = 404
Triclinic, P1Dx = 1.366 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6362 (8) ÅCell parameters from 4814 reflections
b = 11.384 (3) Åθ = 3.7–27.6°
c = 13.022 (3) ŵ = 0.09 mm1
α = 99.64 (3)°T = 293 K
β = 103.61 (2)°Prism, dark-red
γ = 92.440 (17)°0.3 × 0.2 × 0.2 mm
V = 939.2 (3) Å3
Data collection top
Bruker KappaCCD
diffractometer
4288 independent reflections
Radiation source: fine-focus sealed tube2107 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.059
Detector resolution: 9 pixels mm-1θmax = 27.6°, θmin = 3.7°
combined ω– and ϕ–scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1414
Tmin = 0.697, Tmax = 0.746l = 1616
18381 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: difference Fourier map
wR(F2) = 0.142H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.3933P]
where P = (Fo2 + 2Fc2)/3
4288 reflections(Δ/σ)max = 0.006
264 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C21H18N6O2γ = 92.440 (17)°
Mr = 386.41V = 939.2 (3) Å3
Triclinic, P1Z = 2
a = 6.6362 (8) ÅMo Kα radiation
b = 11.384 (3) ŵ = 0.09 mm1
c = 13.022 (3) ÅT = 293 K
α = 99.64 (3)°0.3 × 0.2 × 0.2 mm
β = 103.61 (2)°
Data collection top
Bruker KappaCCD
diffractometer
4288 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2107 reflections with I > 2σ(I)
Tmin = 0.697, Tmax = 0.746Rint = 0.059
18381 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
4288 reflectionsΔρmin = 0.18 e Å3
264 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.7674 (4)0.3683 (3)1.0813 (2)0.0622 (8)
H1A1.88140.42731.09110.093*
H1B1.81980.29151.08580.093*
H1C1.69420.38941.13620.093*
C21.7041 (4)0.4217 (3)0.9009 (2)0.0616 (8)
H2A1.84310.45720.93380.092*
H2B1.61560.48280.88050.092*
H2C1.70480.36390.83820.092*
C31.4360 (3)0.3014 (2)0.94775 (19)0.0396 (6)
C41.3631 (4)0.2398 (2)1.0190 (2)0.0424 (6)
H41.44700.24091.08740.051*
C51.3021 (4)0.2962 (2)0.8449 (2)0.0481 (7)
H51.34520.33590.79580.058*
C61.1699 (4)0.1782 (2)0.9887 (2)0.0439 (6)
H61.12520.13861.03730.053*
C71.1107 (4)0.2342 (2)0.8161 (2)0.0479 (7)
H71.02590.23220.74780.057*
C81.0396 (3)0.1736 (2)0.8874 (2)0.0421 (6)
C90.5372 (3)0.0387 (2)0.7486 (2)0.0424 (6)
C100.4539 (3)0.0039 (2)0.8252 (2)0.0418 (6)
H100.52710.01140.89700.050*
C110.4233 (4)0.0191 (2)0.6422 (2)0.0527 (7)
H110.47570.05040.59120.063*
C120.2630 (3)0.0688 (2)0.7946 (2)0.0421 (6)
H120.20790.09730.84590.051*
C130.2336 (4)0.0462 (2)0.6120 (2)0.0516 (7)
H130.15910.06000.54040.062*
C140.1516 (3)0.0921 (2)0.6875 (2)0.0405 (6)
C150.0433 (4)0.1686 (2)0.6479 (2)0.0459 (6)
C200.4479 (3)0.4709 (2)0.64582 (19)0.0422 (6)
C210.2442 (3)0.4259 (2)0.65840 (19)0.0396 (6)
C220.5059 (4)0.5924 (2)0.6047 (2)0.0531 (7)
H220.64140.62470.59560.064*
C230.0905 (4)0.4947 (2)0.6317 (2)0.0517 (7)
H230.04510.46270.64050.062*
C240.3566 (5)0.6615 (2)0.5784 (2)0.0587 (8)
H240.39080.74260.55120.070*
C250.1519 (4)0.6131 (3)0.5914 (2)0.0591 (8)
H250.05480.66330.57200.071*
N11.6270 (3)0.36337 (19)0.97666 (17)0.0496 (6)
N20.8454 (3)0.10799 (17)0.86454 (18)0.0453 (5)
N30.7346 (3)0.10456 (18)0.77031 (18)0.0494 (6)
N40.2534 (3)0.30838 (18)0.69602 (17)0.0480 (6)
N50.4415 (3)0.2807 (2)0.70813 (18)0.0565 (6)
N60.5633 (3)0.3798 (2)0.67744 (17)0.0551 (6)
O10.1551 (3)0.19039 (18)0.55969 (16)0.0682 (6)
O20.0874 (2)0.22242 (15)0.73157 (14)0.0527 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0443 (15)0.076 (2)0.0604 (19)0.0091 (14)0.0009 (13)0.0164 (16)
C20.0521 (16)0.0671 (19)0.067 (2)0.0110 (14)0.0127 (14)0.0212 (16)
C30.0386 (13)0.0351 (13)0.0433 (15)0.0008 (10)0.0074 (11)0.0068 (11)
C40.0431 (14)0.0460 (15)0.0370 (14)0.0008 (11)0.0073 (11)0.0098 (12)
C50.0453 (15)0.0531 (16)0.0472 (16)0.0056 (12)0.0082 (12)0.0198 (13)
C60.0437 (14)0.0479 (15)0.0430 (16)0.0001 (11)0.0141 (12)0.0122 (12)
C70.0459 (15)0.0501 (16)0.0444 (16)0.0017 (12)0.0015 (12)0.0146 (13)
C80.0398 (13)0.0386 (14)0.0468 (16)0.0004 (11)0.0097 (11)0.0075 (12)
C90.0405 (14)0.0362 (14)0.0487 (16)0.0021 (11)0.0094 (12)0.0068 (12)
C100.0419 (14)0.0373 (14)0.0406 (15)0.0002 (11)0.0039 (11)0.0014 (12)
C110.0540 (16)0.0581 (17)0.0452 (17)0.0100 (13)0.0104 (13)0.0138 (14)
C120.0440 (14)0.0382 (14)0.0428 (16)0.0001 (11)0.0101 (11)0.0055 (12)
C130.0520 (16)0.0558 (17)0.0405 (16)0.0077 (13)0.0010 (12)0.0084 (13)
C140.0396 (13)0.0334 (13)0.0452 (16)0.0007 (10)0.0065 (11)0.0044 (12)
C150.0437 (15)0.0435 (15)0.0493 (17)0.0021 (12)0.0102 (13)0.0087 (13)
C200.0362 (13)0.0580 (17)0.0328 (14)0.0067 (12)0.0087 (10)0.0113 (12)
C210.0362 (13)0.0451 (15)0.0359 (14)0.0049 (11)0.0063 (10)0.0089 (12)
C220.0534 (16)0.0613 (19)0.0413 (16)0.0204 (14)0.0083 (12)0.0119 (14)
C230.0377 (14)0.0608 (19)0.0565 (18)0.0011 (13)0.0084 (12)0.0160 (15)
C240.074 (2)0.0464 (17)0.0523 (18)0.0070 (15)0.0094 (15)0.0118 (14)
C250.0589 (18)0.0575 (19)0.0603 (19)0.0110 (14)0.0115 (14)0.0120 (15)
N10.0416 (12)0.0570 (14)0.0483 (13)0.0109 (10)0.0056 (10)0.0157 (11)
N20.0389 (11)0.0432 (12)0.0513 (14)0.0021 (9)0.0078 (10)0.0076 (10)
N30.0427 (12)0.0479 (13)0.0537 (15)0.0060 (10)0.0082 (10)0.0063 (11)
N40.0376 (12)0.0490 (14)0.0528 (14)0.0105 (10)0.0106 (10)0.0007 (11)
N50.0465 (13)0.0686 (16)0.0533 (15)0.0000 (12)0.0184 (11)0.0007 (12)
N60.0410 (12)0.0723 (16)0.0512 (14)0.0088 (12)0.0177 (10)0.0032 (12)
O10.0596 (12)0.0825 (15)0.0505 (13)0.0235 (10)0.0060 (10)0.0137 (11)
O20.0494 (10)0.0538 (11)0.0474 (11)0.0177 (8)0.0048 (8)0.0041 (9)
Geometric parameters (Å, º) top
C1—N11.449 (3)C11—C131.372 (3)
C1—H1A0.9600C11—H110.9300
C1—H1B0.9600C12—C141.391 (3)
C1—H1C0.9600C12—H120.9300
C2—N11.451 (3)C13—C141.391 (3)
C2—H2A0.9600C13—H130.9300
C2—H2B0.9600C14—C151.461 (3)
C2—H2C0.9600C15—O11.191 (3)
C3—N11.362 (3)C15—O21.417 (3)
C3—C41.410 (3)C20—N61.380 (3)
C3—C51.413 (3)C20—C211.388 (3)
C4—C61.372 (3)C20—C221.399 (3)
C4—H40.9300C21—N41.354 (3)
C5—C71.365 (3)C21—C231.385 (3)
C5—H50.9300C22—C241.362 (4)
C6—C81.389 (3)C22—H220.9300
C6—H60.9300C23—C251.369 (4)
C7—C81.396 (3)C23—H230.9300
C7—H70.9300C24—C251.405 (4)
C8—N21.404 (3)C24—H240.9300
C9—C111.389 (3)C25—H250.9300
C9—C101.392 (3)N2—N31.267 (3)
C9—N31.425 (3)N4—N51.339 (3)
C10—C121.376 (3)N4—O21.379 (2)
C10—H100.9300N5—N61.306 (3)
N1—C1—H1A109.5C10—C12—H12119.7
N1—C1—H1B109.5C14—C12—H12119.7
H1A—C1—H1B109.5C11—C13—C14120.6 (2)
N1—C1—H1C109.5C11—C13—H13119.7
H1A—C1—H1C109.5C14—C13—H13119.7
H1B—C1—H1C109.5C13—C14—C12119.0 (2)
N1—C2—H2A109.5C13—C14—C15117.4 (2)
N1—C2—H2B109.5C12—C14—C15123.6 (2)
H2A—C2—H2B109.5O1—C15—O2120.9 (2)
N1—C2—H2C109.5O1—C15—C14129.1 (2)
H2A—C2—H2C109.5O2—C15—C14110.0 (2)
H2B—C2—H2C109.5N6—C20—C21109.7 (2)
N1—C3—C4121.6 (2)N6—C20—C22130.7 (2)
N1—C3—C5121.3 (2)C21—C20—C22119.6 (2)
C4—C3—C5117.1 (2)N4—C21—C23134.8 (2)
C6—C4—C3120.8 (2)N4—C21—C20101.5 (2)
C6—C4—H4119.6C23—C21—C20123.7 (2)
C3—C4—H4119.6C24—C22—C20117.5 (2)
C7—C5—C3121.2 (2)C24—C22—H22121.3
C7—C5—H5119.4C20—C22—H22121.3
C3—C5—H5119.4C25—C23—C21115.4 (2)
C4—C6—C8121.7 (2)C25—C23—H23122.3
C4—C6—H6119.2C21—C23—H23122.3
C8—C6—H6119.2C22—C24—C25121.6 (3)
C5—C7—C8121.3 (2)C22—C24—H24119.2
C5—C7—H7119.4C25—C24—H24119.2
C8—C7—H7119.4C23—C25—C24122.3 (3)
C6—C8—C7117.9 (2)C23—C25—H25118.9
C6—C8—N2117.1 (2)C24—C25—H25118.9
C7—C8—N2125.0 (2)C3—N1—C1122.1 (2)
C11—C9—C10119.6 (2)C3—N1—C2121.0 (2)
C11—C9—N3115.5 (2)C1—N1—C2116.8 (2)
C10—C9—N3124.9 (2)N3—N2—C8114.5 (2)
C12—C10—C9119.8 (2)N2—N3—C9113.9 (2)
C12—C10—H10120.1N5—N4—C21113.82 (19)
C9—C10—H10120.1N5—N4—O2119.6 (2)
C13—C11—C9120.2 (2)C21—N4—O2126.21 (19)
C13—C11—H11119.9N6—N5—N4106.8 (2)
C9—C11—H11119.9N5—N6—C20108.21 (19)
C10—C12—C14120.7 (2)N4—O2—C15112.84 (18)
N1—C3—C4—C6179.7 (2)C21—C20—C22—C240.1 (4)
C5—C3—C4—C60.2 (3)N4—C21—C23—C25177.4 (3)
N1—C3—C5—C7179.9 (2)C20—C21—C23—C250.2 (4)
C4—C3—C5—C70.0 (4)C20—C22—C24—C250.3 (4)
C3—C4—C6—C80.3 (4)C21—C23—C25—C240.2 (4)
C3—C5—C7—C80.1 (4)C22—C24—C25—C230.5 (4)
C4—C6—C8—C70.1 (4)C4—C3—N1—C10.9 (4)
C4—C6—C8—N2179.9 (2)C5—C3—N1—C1179.2 (2)
C5—C7—C8—C60.1 (4)C4—C3—N1—C2177.1 (2)
C5—C7—C8—N2179.9 (2)C5—C3—N1—C23.0 (4)
C11—C9—C10—C122.3 (4)C6—C8—N2—N3178.6 (2)
N3—C9—C10—C12178.6 (2)C7—C8—N2—N31.5 (3)
C10—C9—C11—C132.7 (4)C8—N2—N3—C9179.39 (19)
N3—C9—C11—C13178.2 (2)C11—C9—N3—N2171.6 (2)
C9—C10—C12—C140.2 (3)C10—C9—N3—N29.4 (3)
C9—C11—C13—C140.9 (4)C23—C21—N4—N5178.5 (3)
C11—C13—C14—C121.2 (4)C20—C21—N4—N50.9 (3)
C11—C13—C14—C15175.3 (2)C23—C21—N4—O28.5 (4)
C10—C12—C14—C131.6 (3)C20—C21—N4—O2173.9 (2)
C10—C12—C14—C15174.7 (2)C21—N4—N5—N60.7 (3)
C13—C14—C15—O17.1 (4)O2—N4—N5—N6174.2 (2)
C12—C14—C15—O1176.5 (3)N4—N5—N6—C200.1 (3)
C13—C14—C15—O2170.8 (2)C21—C20—N6—N50.5 (3)
C12—C14—C15—O25.6 (3)C22—C20—N6—N5178.6 (2)
N6—C20—C21—N40.8 (3)N5—N4—O2—C1599.1 (3)
C22—C20—C21—N4178.3 (2)C21—N4—O2—C1588.3 (3)
N6—C20—C21—C23178.8 (2)O1—C15—O2—N46.6 (3)
C22—C20—C21—C230.4 (4)C14—C15—O2—N4171.51 (18)
N6—C20—C22—C24178.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N5i0.932.633.415 (3)142
C23—H23···N6ii0.932.633.560 (3)176
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H18N6O2
Mr386.41
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.6362 (8), 11.384 (3), 13.022 (3)
α, β, γ (°)99.64 (3), 103.61 (2), 92.440 (17)
V3)939.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerBruker KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.697, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
18381, 4288, 2107
Rint0.059
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.142, 1.04
No. of reflections4288
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: COLLECT (Hooft, 1998), DIRAX (Duisenberg, 1992), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N5i0.932.633.415 (3)142.0
C23—H23···N6ii0.932.633.560 (3)175.9
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z.
 

Acknowledgements

The authors acknowledge the CNRST (Morocco) for partial financial support

References

First citationBaldini, L., Sansone, F., Faimani, G., Massera, C., Casnati, A. & Ungaro, R. (2008). Eur. J. Org. Chem. 5, 869–886.  Web of Science CrossRef Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKönig, W. & Geiger, R. (1970). Chem. Ber. 103, 788–798.  PubMed Web of Science Google Scholar
First citationMiyazawa, T., Otomatsu, T., Yamada, T. & Kuwata, S. (1984). Tetrahedron Lett. 25, 771–772.  CrossRef CAS Web of Science Google Scholar
First citationPapaefstathiou, G. S., Vicente, R., Raptopoulou, C. P., Terzis, A., Escuer, A. & Perlepes, S. P. (2002). Eur. J. Inorg. Chem. 9, 2488–2493.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds