organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-4a,10b-cis,10b,5c-trans-5-(7-Methyl-2-oxo-2H-chromen-4-yl)-3,4,4a,5,6,10b-hexa­hydro-2H-pyrano[3,2-c]quinoline

aDepartment of Physics, Kunthavai Naachiar Government Arts College (W) (Autonomous), Thanjavur-7, India, and bDepartment of Chemistry, Institute of Chemical Technology, N.M. Parekh Road, Matunga, Mumbai 400 019, India
*Correspondence e-mail: vasuki.arasi@yahoo.com

(Received 17 December 2012; accepted 18 January 2013; online 23 January 2013)

In the racemic title compound, C22H21NO3, the nitro­gen-containing ring of the pyran­oquinoline moiety adopts a slightly distorted half-chair conformation and the oxygen-containing ring adopts a slightly distorted chair conformation. The benzene rings make a dihedral angle of 84.97 (8)°. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into chains extending along the a-axis direction.

Related literature

For general background and related coumarin compounds, see: Aazam et al. (2006[Aazam, E. S., Fawazy, A. & Hitchcock, P. B. (2006). Acta Cryst. E62, o4285-o4287.]); Chinnakali et al. (2009[Chinnakali, K., Sudha, D., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2009). Acta Cryst. E65, o2099-o2100.]); Du et al. (2010[Du, B.-X., Zhou, J., Li, Y.-L. & Wang, X.-S. (2010). Acta Cryst. E66, o1622.]); Pereira Silva et al. (2010[Pereira Silva, P. S., Parveen, M., Khanam, Z., Ali, A. & Ramos Silva, M. (2010). Acta Cryst. E66, o988.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C22H21NO3

  • Mr = 347.40

  • Triclinic, [P \overline 1]

  • a = 7.7529 (4) Å

  • b = 11.2790 (7) Å

  • c = 11.7563 (11) Å

  • α = 117.232 (3)°

  • β = 98.475 (3)°

  • γ = 101.301 (2)°

  • V = 862.60 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.20 × 0.15 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.987

  • 18945 measured reflections

  • 5009 independent reflections

  • 3544 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.177

  • S = 1.03

  • 5009 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O1i 0.97 2.59 3.307 (3) 131
C20—H20⋯O2ii 0.93 2.40 3.275 (2) 157
Symmetry codes: (i) -x+2, -y+2, -z; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2 SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Coumarin is the simplest member of the group of oxygen heterocyclic compounds called benzo-2-pyrones. Coumarins are an important class of compound due to their presence in natural products as well as their medicinal applications, e.g. as anti-inflammatory, anti-viral, antioxidant, antibacterial, antifungal, anti-HIV and as anti-carcinogenic agents (Pereira Silva et al., 2010). Coumarin and its derivatives also have applications as fluorescent dyes for synthetic fibres and daylight fluorescent pigments (Aazam et al., 2006) and as cosmetics, optical brightening agents and laser dyes (Pereira Silva et al., 2010). The synthesis of pyranoquinoline derivatives has been the focus of great interest, because it was reported that these possess a broad spectrum of biological properties such as psychotropic activity and anti-allergenic activity and they are also used for the treatment of proliferative diseases, such as cancer (Du et al., 2010). Compounds containing pyranoquinolone motifs also exhibit antiproliferative and antitubulin activities and it includes antibacterial and antifungal activities. Some of the pyranoquinoline derivatives have been found to block acetylcholinesterase and cell calcium signals, and cause neuroprotection against calcium overload and free radicals (Chinnakali et al., 2009).

We report herein the crystal structure of the racemic title compound, a pyranoquinoline-substituted methyl coumarin derivative, C22H21NO3 (Fig. 1). The dihedral angle between the phenyl rings of the coumarin molecule and the pyranoquinoline moiety is 84.97 (8)° . The C15 atom of the carbonyl group has a distorted trigonal geometry with O2—C15—O1 [117.36 (14)°] and O2—C15—C14 [125.26 (16)°], deviating significantly from the ideal sp2 value of 120°, which is consistent with the values observed in a related structure (Pereira Silva et al., 2010). In the crystal, weak intermolecular C20—H···O2ii hydrogen bonds together with C12—H···O1i hydrogen bonds between inversion-related molecules (Table 1), give one-dimensional chain structures which extend along the a axis (Fig. 2). Present also in the crystal packing are C5—H···π ring interactions [minimum C···Cg separation, 3.910 (3) Å] (for symmetry codes, see Table 1). The substituent ring defined by (N1, C1, C6–C9) adopts a slightly distorted half-chair conformation with Q = 0.4852 (18) Å, θ = 48.0 (2)° and ϕ = 259.3 (3)° while the ring defined by (O3, C7–C12) adopts a slightly distorted chair conformation with Q = 0.548 (2) Å, θ = 2.8 (2)° and ϕ = 300 (5)° (Cremer & Pople, 1975).

Related literature top

For general background and related coumarin compounds, see: Aazam et al. (2006); Chinnakali et al. (2009); Du et al. (2010); Pereira Silva et al. (2010). For ring conformational analysis, see: Cremer & Pople (1975).

Experimental top

7-Methylcoumarin-4-azadiene (0.263 g, 1 mmol) and ZnCl2 (0.136 g, 1 mmol) were stirred in dichloroethane (5 ml) for 15 minutes and dihydropyran (0.252 g, 3 mmol) was added slowly at room temperature. The solution was heated till complete consumption of the coumarin reagent. The solution was cooled to room temperature, quenched with water and the product was extracted with chloroform. The extract was dried over anhydrous Na2SO4 and the solvent evaporated to obtain a sticky mass which was purified by column chromatography on silica gel using chloroform.

Refinement top

All the H atoms were positioned geometrically and treated as riding on their parent atoms, with N—H = 0.86 Å, C—H = 0.93 Å (aromatic), 0.96 Å (methyl) and 0.97 Å (methylene), and refined using a riding model with Uiso(H) = 1.2Ueq or 1.5 Ueq (parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing atom numbering, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound looking down the a axis, showing C—H···O interactions as dashed lines.
rac-4a,10-cis,10b,5c-trans-5-(7-Methyl-2-oxo-2H-chromen-4-yl)-3,4,4a,5,6,10b-hexahydro-2H-pyrano[3,2-c]quinoline top
Crystal data top
C22H21NO3Z = 2
Mr = 347.40F(000) = 368
Triclinic, P1Dx = 1.338 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7529 (4) ÅCell parameters from 6950 reflections
b = 11.2790 (7) Åθ = 2.1–30.2°
c = 11.7563 (11) ŵ = 0.09 mm1
α = 117.232 (3)°T = 296 K
β = 98.475 (3)°Block, colourless
γ = 101.301 (2)°0.20 × 0.15 × 0.15 mm
V = 862.60 (11) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5009 independent reflections
Radiation source: fine-focus sealed tube3544 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scanθmax = 30.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker 1999)
h = 1010
Tmin = 0.984, Tmax = 0.987k = 1515
18945 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0832P)2 + 0.3474P]
where P = (Fo2 + 2Fc2)/3
5009 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C22H21NO3γ = 101.301 (2)°
Mr = 347.40V = 862.60 (11) Å3
Triclinic, P1Z = 2
a = 7.7529 (4) ÅMo Kα radiation
b = 11.2790 (7) ŵ = 0.09 mm1
c = 11.7563 (11) ÅT = 296 K
α = 117.232 (3)°0.20 × 0.15 × 0.15 mm
β = 98.475 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5009 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 1999)
3544 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.987Rint = 0.030
18945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
5009 reflectionsΔρmin = 0.27 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69639 (15)0.63713 (13)0.02296 (11)0.0385 (3)
C130.9273 (2)0.64223 (15)0.13810 (14)0.0305 (3)
C211.0013 (2)0.66621 (15)0.00600 (14)0.0306 (3)
N10.95359 (19)0.59869 (13)0.35976 (12)0.0343 (3)
H10.94250.51490.41990.041*
C160.8806 (2)0.66458 (16)0.07070 (15)0.0321 (3)
C140.7463 (2)0.61512 (17)0.18120 (16)0.0363 (3)
H140.69820.59780.26650.044*
C91.0532 (2)0.65038 (16)0.22402 (14)0.0320 (3)
H91.13250.59220.22530.038*
C10.8757 (2)0.68235 (16)0.39430 (14)0.0315 (3)
C170.9383 (2)0.69114 (17)0.19930 (16)0.0377 (3)
H170.85380.68980.24760.045*
C181.1206 (2)0.71958 (17)0.25613 (16)0.0375 (3)
C191.2429 (2)0.71608 (18)0.17925 (17)0.0394 (4)
H191.36590.73220.21540.047*
C201.1850 (2)0.68931 (18)0.05130 (16)0.0372 (3)
H201.26910.68650.00200.045*
O31.16897 (19)1.03131 (13)0.12889 (13)0.0526 (4)
C81.1758 (2)0.80019 (17)0.16807 (15)0.0363 (3)
H81.23890.83660.07480.044*
O20.45952 (18)0.58805 (17)0.13623 (15)0.0564 (4)
C150.6228 (2)0.61153 (18)0.10156 (17)0.0377 (3)
C71.0589 (2)0.89261 (16)0.17287 (16)0.0384 (4)
H70.98580.90010.11000.046*
C60.9262 (2)0.82680 (16)0.30839 (16)0.0359 (3)
C101.3203 (2)0.8037 (2)0.24303 (18)0.0419 (4)
H10A1.40400.75550.22800.050*
H10B1.26140.75570.33760.050*
C20.7472 (2)0.62255 (19)0.51719 (17)0.0415 (4)
H20.71210.52640.57440.050*
C221.1856 (3)0.7542 (2)0.39765 (18)0.0518 (5)
H22A1.31550.77090.42090.078*
H22B1.12630.67750.40720.078*
H22C1.15660.83650.45530.078*
C121.2970 (3)1.03446 (19)0.2043 (2)0.0537 (5)
H12A1.36621.13070.17120.064*
H12B1.23110.99520.29650.064*
C50.8472 (3)0.9065 (2)0.3492 (2)0.0514 (5)
H50.87961.00260.29280.062*
C40.7226 (3)0.8466 (3)0.4707 (3)0.0616 (6)
H40.67240.90190.49640.074*
C30.6725 (3)0.7046 (2)0.5542 (2)0.0542 (5)
H30.58740.66380.63620.065*
C111.4262 (3)0.9538 (2)0.1964 (2)0.0541 (5)
H11A1.50020.99760.10550.065*
H11B1.50730.95470.25170.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0341 (6)0.0493 (7)0.0405 (6)0.0154 (5)0.0186 (5)0.0257 (5)
C130.0329 (7)0.0325 (7)0.0300 (7)0.0116 (6)0.0133 (6)0.0168 (6)
C210.0330 (7)0.0326 (7)0.0307 (7)0.0112 (6)0.0127 (6)0.0179 (6)
N10.0461 (8)0.0300 (6)0.0254 (6)0.0145 (5)0.0118 (5)0.0110 (5)
C160.0333 (8)0.0330 (7)0.0347 (7)0.0117 (6)0.0140 (6)0.0188 (6)
C140.0354 (8)0.0440 (9)0.0344 (8)0.0131 (6)0.0123 (6)0.0221 (7)
C90.0336 (8)0.0388 (8)0.0285 (7)0.0134 (6)0.0134 (6)0.0185 (6)
C10.0342 (8)0.0345 (7)0.0290 (7)0.0109 (6)0.0135 (6)0.0166 (6)
C170.0450 (9)0.0409 (8)0.0358 (8)0.0145 (7)0.0202 (7)0.0227 (7)
C180.0469 (9)0.0359 (8)0.0328 (7)0.0104 (7)0.0119 (6)0.0202 (6)
C190.0349 (8)0.0485 (9)0.0399 (8)0.0119 (7)0.0084 (6)0.0270 (8)
C200.0350 (8)0.0480 (9)0.0387 (8)0.0145 (7)0.0162 (6)0.0270 (7)
O30.0595 (8)0.0312 (6)0.0472 (7)0.0018 (5)0.0232 (6)0.0061 (5)
C80.0350 (8)0.0436 (9)0.0263 (7)0.0046 (6)0.0087 (6)0.0170 (6)
O20.0334 (7)0.0876 (11)0.0619 (9)0.0234 (7)0.0187 (6)0.0447 (8)
C150.0333 (8)0.0444 (9)0.0429 (8)0.0150 (6)0.0142 (6)0.0253 (7)
C70.0426 (9)0.0307 (7)0.0318 (7)0.0051 (6)0.0161 (6)0.0082 (6)
C60.0373 (8)0.0332 (8)0.0372 (8)0.0117 (6)0.0148 (6)0.0158 (6)
C100.0372 (9)0.0538 (10)0.0450 (9)0.0143 (7)0.0179 (7)0.0307 (8)
C20.0387 (9)0.0463 (9)0.0346 (8)0.0095 (7)0.0088 (7)0.0179 (7)
C220.0595 (12)0.0614 (12)0.0362 (9)0.0124 (9)0.0112 (8)0.0287 (9)
C120.0603 (12)0.0368 (9)0.0536 (11)0.0000 (8)0.0229 (9)0.0179 (8)
C50.0519 (11)0.0411 (9)0.0682 (13)0.0204 (8)0.0198 (9)0.0294 (9)
C40.0565 (13)0.0700 (14)0.0808 (15)0.0291 (11)0.0165 (11)0.0524 (13)
C30.0425 (10)0.0737 (14)0.0523 (11)0.0169 (9)0.0072 (8)0.0381 (11)
C110.0416 (10)0.0625 (12)0.0491 (10)0.0022 (8)0.0143 (8)0.0271 (9)
Geometric parameters (Å, º) top
O1—C151.362 (2)C8—C71.523 (2)
O1—C161.3720 (19)C8—C101.529 (2)
C13—C141.342 (2)C8—H80.9800
C13—C211.451 (2)O2—C151.207 (2)
C13—C91.5237 (19)C7—C61.511 (2)
C21—C161.3948 (19)C7—H70.9800
C21—C201.401 (2)C6—C51.391 (2)
N1—C11.386 (2)C10—C111.522 (3)
N1—C91.4463 (19)C10—H10A0.9700
N1—H10.8600C10—H10B0.9700
C16—C171.382 (2)C2—C31.373 (3)
C14—C151.442 (2)C2—H20.9300
C14—H140.9300C22—H22A0.9600
C9—C81.536 (2)C22—H22B0.9600
C9—H90.9800C22—H22C0.9600
C1—C21.398 (2)C12—C111.499 (3)
C1—C61.398 (2)C12—H12A0.9700
C17—C181.377 (2)C12—H12B0.9700
C17—H170.9300C5—C41.373 (3)
C18—C191.397 (2)C5—H50.9300
C18—C221.502 (2)C4—C31.372 (3)
C19—C201.374 (2)C4—H40.9300
C19—H190.9300C3—H30.9300
C20—H200.9300C11—H11A0.9700
O3—C121.431 (2)C11—H11B0.9700
O3—C71.4316 (19)
C15—O1—C16121.40 (12)O1—C15—C14117.37 (14)
C14—C13—C21118.25 (13)O3—C7—C6112.52 (14)
C14—C13—C9121.18 (13)O3—C7—C8111.57 (14)
C21—C13—C9120.56 (13)C6—C7—C8111.58 (12)
C16—C21—C20116.62 (13)O3—C7—H7106.9
C16—C21—C13117.98 (13)C6—C7—H7106.9
C20—C21—C13125.39 (13)C8—C7—H7106.9
C1—N1—C9120.93 (12)C5—C6—C1118.48 (16)
C1—N1—H1119.5C5—C6—C7121.39 (15)
C9—N1—H1119.5C1—C6—C7120.10 (14)
O1—C16—C17115.72 (13)C11—C10—C8110.52 (15)
O1—C16—C21121.83 (13)C11—C10—H10A109.5
C17—C16—C21122.45 (15)C8—C10—H10A109.5
C13—C14—C15123.12 (14)C11—C10—H10B109.5
C13—C14—H14118.4C8—C10—H10B109.5
C15—C14—H14118.4H10A—C10—H10B108.1
N1—C9—C13112.47 (12)C3—C2—C1120.53 (17)
N1—C9—C8108.27 (12)C3—C2—H2119.7
C13—C9—C8112.04 (12)C1—C2—H2119.7
N1—C9—H9108.0C18—C22—H22A109.5
C13—C9—H9108.0C18—C22—H22B109.5
C8—C9—H9108.0H22A—C22—H22B109.5
N1—C1—C2119.91 (14)C18—C22—H22C109.5
N1—C1—C6120.76 (14)H22A—C22—H22C109.5
C2—C1—C6119.33 (15)H22B—C22—H22C109.5
C18—C17—C16120.12 (14)O3—C12—C11111.81 (16)
C18—C17—H17119.9O3—C12—H12A109.3
C16—C17—H17119.9C11—C12—H12A109.3
C17—C18—C19118.40 (14)O3—C12—H12B109.3
C17—C18—C22120.50 (15)C11—C12—H12B109.3
C19—C18—C22121.10 (16)H12A—C12—H12B107.9
C20—C19—C18121.31 (15)C4—C5—C6121.58 (18)
C20—C19—H19119.3C4—C5—H5119.2
C18—C19—H19119.3C6—C5—H5119.2
C19—C20—C21120.98 (14)C3—C4—C5119.68 (18)
C19—C20—H20119.5C3—C4—H4120.2
C21—C20—H20119.5C5—C4—H4120.2
C12—O3—C7112.87 (13)C4—C3—C2120.39 (18)
C7—C8—C10110.95 (13)C4—C3—H3119.8
C7—C8—C9109.85 (13)C2—C3—H3119.8
C10—C8—C9111.42 (13)C12—C11—C10110.22 (15)
C7—C8—H8108.2C12—C11—H11A109.6
C10—C8—H8108.2C10—C11—H11A109.6
C9—C8—H8108.2C12—C11—H11B109.6
O2—C15—O1117.36 (14)C10—C11—H11B109.6
O2—C15—C14125.26 (16)H11A—C11—H11B108.1
C14—C13—C21—C162.2 (2)C13—C9—C8—C10171.57 (13)
C9—C13—C21—C16176.72 (13)C16—O1—C15—O2179.89 (15)
C14—C13—C21—C20176.89 (15)C16—O1—C15—C140.3 (2)
C9—C13—C21—C204.2 (2)C13—C14—C15—O2179.75 (18)
C15—O1—C16—C17178.94 (14)C13—C14—C15—O10.0 (2)
C15—O1—C16—C210.7 (2)C12—O3—C7—C668.9 (2)
C20—C21—C16—O1177.22 (14)C12—O3—C7—C857.39 (19)
C13—C21—C16—O12.0 (2)C10—C8—C7—O352.89 (17)
C20—C21—C16—C173.2 (2)C9—C8—C7—O3176.54 (12)
C13—C21—C16—C17177.65 (14)C10—C8—C7—C673.92 (16)
C21—C13—C14—C151.3 (2)C9—C8—C7—C649.72 (16)
C9—C13—C14—C15177.63 (14)N1—C1—C6—C5178.45 (15)
C1—N1—C9—C1381.22 (17)C2—C1—C6—C50.5 (2)
C1—N1—C9—C843.13 (18)N1—C1—C6—C73.5 (2)
C14—C13—C9—N111.8 (2)C2—C1—C6—C7177.48 (14)
C21—C13—C9—N1169.30 (13)O3—C7—C6—C533.6 (2)
C14—C13—C9—C8110.44 (17)C8—C7—C6—C5159.93 (15)
C21—C13—C9—C868.46 (18)O3—C7—C6—C1148.42 (14)
C9—N1—C1—C2165.72 (14)C8—C7—C6—C122.1 (2)
C9—N1—C1—C615.3 (2)C7—C8—C10—C1151.00 (19)
O1—C16—C17—C18179.88 (14)C9—C8—C10—C11173.74 (14)
C21—C16—C17—C180.5 (2)N1—C1—C2—C3178.30 (15)
C16—C17—C18—C192.1 (2)C6—C1—C2—C30.7 (2)
C16—C17—C18—C22177.53 (16)C7—O3—C12—C1159.8 (2)
C17—C18—C19—C202.0 (3)C1—C6—C5—C40.1 (3)
C22—C18—C19—C20177.66 (16)C7—C6—C5—C4178.11 (18)
C18—C19—C20—C210.8 (3)C6—C5—C4—C30.7 (3)
C16—C21—C20—C193.3 (2)C5—C4—C3—C20.5 (3)
C13—C21—C20—C19177.62 (15)C1—C2—C3—C40.2 (3)
N1—C9—C8—C759.54 (15)O3—C12—C11—C1056.8 (2)
C13—C9—C8—C765.06 (16)C8—C10—C11—C1252.7 (2)
N1—C9—C8—C1063.82 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···N10.972.582.947 (2)103
C12—H12A···O1i0.972.593.307 (3)131
C14—H14···N10.932.402.789 (2)105
C20—H20···O2ii0.932.403.275 (2)157
C5—H5···Cg5iii0.932.983.910 (3)173
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y, z; (iii) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC22H21NO3
Mr347.40
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.7529 (4), 11.2790 (7), 11.7563 (11)
α, β, γ (°)117.232 (3), 98.475 (3), 101.301 (2)
V3)862.60 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.15 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 1999)
Tmin, Tmax0.984, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
18945, 5009, 3544
Rint0.030
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.177, 1.03
No. of reflections5009
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.27

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.972.593.307 (3)131
C20—H20···O2ii0.932.403.275 (2)157
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrument Facility, IIT-Madras, Chennai, for the data collection.

References

First citationAazam, E. S., Fawazy, A. & Hitchcock, P. B. (2006). Acta Cryst. E62, o4285–o4287.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChinnakali, K., Sudha, D., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2009). Acta Cryst. E65, o2099–o2100.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDu, B.-X., Zhou, J., Li, Y.-L. & Wang, X.-S. (2010). Acta Cryst. E66, o1622.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPereira Silva, P. S., Parveen, M., Khanam, Z., Ali, A. & Ramos Silva, M. (2010). Acta Cryst. E66, o988.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds