supplementary materials


Acta Cryst. (2013). E69, i17    [ doi:10.1107/S1600536813003541 ]

Barium dierbium(III) tetrasulfide

A. Mesbah, W. Stojko and J. A. Ibers

Abstract top

Barium dierbium(III) tetrasulfide, BaEr2S4, crystallizes with four formula units in the orthorhombic space group Pnma in the CaFe2O4 structure type. The asymmetric unit contains two Er, one Ba, and four S atoms, each with .m. site symmetry. The structure consists of channels formed by corner- and edge-sharing ErS6 octahedra in which Ba atoms reside. The resultant coordination of Ba is that of a bicapped trigonal prism.

Comment top

Orange needles of BaEr2S4 were obtained in a solid-state reaction. The compound was synthesized previously (Patrie et al., 1964), and its unit cell parameters were determined from X-powder diffraction data. In the BaLn2S4 family (Ln = rare earth element) no structures have been determined from single-crystal data but that of the closely related compound BaLu2S4 has (Schurz & Schleid, 2011). Here, from X-ray diffraction single-crystal data we find that BaEr2S4 crystallizes in the CaFe2O4 structure type (Decker & Kasper, 1957) with four formula units in space group Pnma of the orthorhombic system. In the asymmetric unit there are two Er, one Ba, and four S atoms, each with site symmetry .m.. A projection of the structure down [010] is shown in Figure 1. The structure consists of ErS6 octahedra that form dimers by edge-sharing. Four such dimers form an infinite channel by corner-sharing in the (010) plane. Each channel is filled by one Ba atom. Each Er1 atom is octahedrally coordinated to one S2, three S3, and two S4 atoms; each Er2 atom is coordinated to three S1, two S2, and one S4 atom. The interatomic Er - S distances at 2.6706 (10) to 2.7376 (7) Å compare favorably to those of 2.672 (4) to 2.720 (4) Å in the structure of BaLu2S4 (Schurz & Schleid, 2011). As there are no S - S bonds in the structure, formal oxidation states may be assigned as Ba2+, Er3+, and S2-.

Related literature top

The unit-cell parameters of BaEr2S4, which crystallizes in the CaFe2O4 structure type (Decker & Kasper, 1957), were previously determined from X-ray powder diffraction data (Patrie et al., 1964). For related structures, see: Bugaris & Ibers (2009); Narducci et al. (2000); Carpenter & Hwu (1992); Flahaut et al. (1965); Schurz & Schleid (2011). For synthetic details, see: Bugaris & Ibers (2008); Haneveld & Jellinek (1969). For standardization of structural data, see: Gelato & Parthé (1987).

Experimental top

In an exploration of the quaternary solid-state Ba/Er/U/S system, orange needles of BaEr2S4 were obtained instead in a two-step reaction. Uranium powder was obtained by hydridization and decomposition of 238U turnings (Oak Ridge National Laboratory) (Bugaris & Ibers, 2008; Haneveld & Jellinek, 1969). The other reactants were used as obtained. In the first step, a mixture consisting of powdered 238U (20.9 mg, 0.088 mmol), Er (14.0 mg, 0.084 mmol), BaS (42.7 mg, 0.252 mmol), and S (8.0 mg, 0.25 mmol) was loaded into a carbon-coated fused-silica tube under an Ar atmosphere in a glove box. The tube was evacuated to 10 -4 Torr, and flame sealed. It was placed in computer-contolled furnace, heated to 1273 K in 48 h, held there for 8 d, then cooled to 293 K at 3 K/h. In the second step, the resultant black powder was ground and mixed thoroughly with 50 mg of Sb2S3. This mixture was re-loaded into a carbon-coated fused-silica tube, evacuated, sealed, and then placed in a computer-controlled furnace The tube was heated to 1273 K in 24 h, held there for 4 d, then cooled to 293 K at 2 K/h. Orange needles were obtained in about 50 wt% yield. Analysis of these orange crystals on an EDX– equipped Hitachi S-3400 SEM showed the presence of Ba, Er, and S in the approximate ratio 1:2:4 but no U. The other products were black crystals of Sb2S3 and US2.

Refinement top

The structure was standardized by means of the program STRUCTURE TIDY ((Gelato & Parthé, 1987). The highest peak in the difference electron density map (2.46 e. Å-3) was 0.47 Å from atom Er1 and the deepest hole (- 2.58 e. Å-3) was 0.20 Å from atom Ba1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: CrystalMaker (Palmer, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. Structure of BaEr2S4 viewed approximatly down [010]. Displacement ellipsoids are drawn at 95% probability level.
Barium dierbium(III) tetrasulfide top
Crystal data top
BaEr2S4F(000) = 1024
Mr = 600.10Dx = 5.721 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 8150 reflections
a = 12.1455 (3) Åθ = 2.3–30.5°
b = 3.9884 (1) ŵ = 30.53 mm1
c = 14.3837 (4) ÅT = 100 K
V = 696.76 (3) Å3Needle, orange
Z = 40.16 × 0.03 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
1207 independent reflections
Radiation source: fine-focus sealed tube1196 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 30.5°, θmin = 2.2°
Absorption correction: numerical
face indexed (Sheldrick, 2008a)
h = 1717
Tmin = 0.084, Tmax = 0.528k = 55
9866 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017 1/[s2(Fo2) + (0.0192Fo2)2]
wR(F2) = 0.050(Δ/σ)max = 0.002
S = 1.87Δρmax = 2.46 e Å3
1207 reflectionsΔρmin = 2.58 e Å3
44 parametersExtinction correction: SHELXL97 (Sheldrick, 2008a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00257 (16)
Crystal data top
BaEr2S4V = 696.76 (3) Å3
Mr = 600.10Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.1455 (3) ŵ = 30.53 mm1
b = 3.9884 (1) ÅT = 100 K
c = 14.3837 (4) Å0.16 × 0.03 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
1207 independent reflections
Absorption correction: numerical
face indexed (Sheldrick, 2008a)
1196 reflections with I > 2σ(I)
Tmin = 0.084, Tmax = 0.528Rint = 0.030
9866 measured reflectionsθmax = 30.5°
Refinement top
R[F2 > 2σ(F2)] = 0.017Δρmax = 2.46 e Å3
wR(F2) = 0.050Δρmin = 2.58 e Å3
S = 1.87Absolute structure: ?
1207 reflectionsFlack parameter: ?
44 parametersRogers parameter: ?
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.079448 (16)0.25000.398817 (12)0.00349 (8)
Er20.566211 (16)0.25000.608465 (12)0.00444 (8)
Ba10.24191 (2)0.25000.662667 (18)0.00705 (9)
S10.08229 (8)0.25000.07671 (7)0.00485 (18)
S20.29294 (9)0.25000.33808 (7)0.00537 (18)
S30.37564 (8)0.25000.02341 (7)0.00449 (18)
S40.47727 (8)0.25000.78311 (7)0.00490 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.00359 (11)0.00300 (12)0.00388 (11)0.0000.00010 (5)0.000
Er20.00495 (12)0.00349 (12)0.00487 (11)0.0000.00020 (5)0.000
Ba10.00595 (14)0.00835 (14)0.00683 (13)0.0000.00015 (8)0.000
S10.0057 (4)0.0040 (4)0.0049 (4)0.0000.0004 (3)0.000
S20.0037 (4)0.0044 (4)0.0080 (4)0.0000.0006 (3)0.000
S30.0046 (4)0.0037 (4)0.0052 (4)0.0000.0009 (3)0.000
S40.0061 (4)0.0039 (4)0.0047 (4)0.0000.0015 (3)0.000
Geometric parameters (Å, º) top
Er1—S4i2.6872 (6)Ba1—S43.3426 (11)
Er1—S4ii2.6872 (6)Ba1—Er2x3.9231 (3)
Er1—S3iii2.7164 (10)Ba1—Ba1xi3.9884 (1)
Er1—S3iv2.7360 (7)Ba1—Ba1xii3.9884
Er1—S3v2.7360 (7)S1—Er2iii2.6706 (10)
Er1—S22.7362 (11)S1—Er2i2.7273 (7)
Er1—Ba14.2774 (3)S1—Er2ii2.7273 (7)
Er2—S1vi2.6706 (10)S1—Ba1ii3.1725 (8)
Er2—S1v2.7274 (7)S1—Ba1i3.1725 (8)
Er2—S1iv2.7274 (7)S2—Er2vii2.7376 (7)
Er2—S42.7345 (9)S2—Er2viii2.7376 (7)
Er2—S2vii2.7376 (7)S2—Ba1i3.2437 (9)
Er2—S2viii2.7376 (7)S2—Ba1ii3.2437 (9)
Er2—Ba1ix3.9231 (3)S3—Er1vi2.7163 (10)
Er2—Ba14.0153 (3)S3—Er1i2.7360 (7)
Ba1—S3v3.1666 (8)S3—Er1ii2.7360 (7)
Ba1—S3iv3.1666 (8)S3—Ba1ii3.1666 (8)
Ba1—S1iv3.1725 (8)S3—Ba1i3.1666 (8)
Ba1—S1v3.1725 (8)S4—Er1iv2.6873 (6)
Ba1—S2iv3.2438 (9)S4—Er1v2.6873 (6)
Ba1—S2v3.2438 (9)S4—Ba1ix3.3074 (11)
Ba1—S4x3.3074 (11)
S4i—Er1—S4ii95.82 (3)S3iv—Ba1—Er2x106.592 (19)
S4i—Er1—S3iii91.23 (3)S1iv—Ba1—Er2x133.879 (16)
S4ii—Er1—S3iii91.23 (3)S1v—Ba1—Er2x133.879 (16)
S4i—Er1—S3iv176.07 (3)S2iv—Ba1—Er2x43.642 (15)
S4ii—Er1—S3iv85.17 (2)S2v—Ba1—Er2x43.642 (15)
S3iii—Er1—S3iv84.95 (3)S4x—Ba1—Er2x43.408 (16)
S4i—Er1—S3v85.17 (2)S4—Ba1—Er2x91.735 (18)
S4ii—Er1—S3v176.07 (3)S3v—Ba1—Ba1xi129.032 (11)
S3iii—Er1—S3v84.95 (3)S3iv—Ba1—Ba1xi50.967 (11)
S3iv—Er1—S3v93.58 (3)S1iv—Ba1—Ba1xi51.054 (12)
S4i—Er1—S292.59 (3)S1v—Ba1—Ba1xi128.946 (12)
S4ii—Er1—S292.59 (3)S2iv—Ba1—Ba1xi52.064 (12)
S3iii—Er1—S2174.30 (3)S2v—Ba1—Ba1xi127.936 (12)
S3iv—Er1—S291.16 (3)S4x—Ba1—Ba1xi90.0
S3v—Er1—S291.16 (3)S4—Ba1—Ba1xi90.0
S4i—Er1—Ba1131.894 (15)Er2x—Ba1—Ba1xi90.0
S4ii—Er1—Ba1131.894 (15)S3v—Ba1—Ba1xii50.967 (11)
S3iii—Er1—Ba193.15 (2)S3iv—Ba1—Ba1xii129.032 (11)
S3iv—Er1—Ba147.693 (15)S1iv—Ba1—Ba1xii128.946 (12)
S3v—Er1—Ba147.693 (15)S1v—Ba1—Ba1xii51.054 (12)
S2—Er1—Ba181.15 (2)S2iv—Ba1—Ba1xii127.936 (12)
S1vi—Er2—S1v83.18 (3)S2v—Ba1—Ba1xii52.064 (12)
S1vi—Er2—S1iv83.18 (3)S4x—Ba1—Ba1xii90.0
S1v—Er2—S1iv93.97 (3)S4—Ba1—Ba1xii90.0
S1vi—Er2—S4160.92 (3)Er2x—Ba1—Ba1xii90.0
S1v—Er2—S483.84 (3)Ba1xi—Ba1—Ba1xii180.0
S1iv—Er2—S483.84 (3)S3v—Ba1—Er2108.630 (19)
S1vi—Er2—S2vii103.56 (3)S3iv—Ba1—Er2108.630 (19)
S1v—Er2—S2vii173.17 (3)S1iv—Ba1—Er242.616 (14)
S1iv—Er2—S2vii85.85 (2)S1v—Ba1—Er242.616 (14)
S4—Er2—S2vii89.36 (3)S2iv—Ba1—Er2106.201 (19)
S1vi—Er2—S2viii103.56 (3)S2v—Ba1—Er2106.201 (19)
S1v—Er2—S2viii85.85 (2)S4x—Ba1—Er2177.557 (18)
S1iv—Er2—S2viii173.17 (3)S4—Ba1—Er242.413 (17)
S4—Er2—S2viii89.36 (3)Er2x—Ba1—Er2134.149 (8)
S2vii—Er2—S2viii93.51 (3)Ba1xi—Ba1—Er290.0
S1vi—Er2—Ba1ix142.85 (2)Ba1xii—Ba1—Er290.0
S1v—Er2—Ba1ix120.02 (2)Er2iii—S1—Er2i96.82 (3)
S1iv—Er2—Ba1ix120.02 (2)Er2iii—S1—Er2ii96.82 (3)
S4—Er2—Ba1ix56.22 (2)Er2i—S1—Er2ii93.97 (3)
S2vii—Er2—Ba1ix54.861 (19)Er2iii—S1—Ba1ii115.97 (3)
S2viii—Er2—Ba1ix54.861 (19)Er2i—S1—Ba1ii147.08 (4)
S1vi—Er2—Ba1105.39 (2)Er2ii—S1—Ba1ii85.422 (12)
S1v—Er2—Ba151.961 (18)Er2iii—S1—Ba1i115.97 (3)
S1iv—Er2—Ba151.961 (18)Er2i—S1—Ba1i85.422 (12)
S4—Er2—Ba155.53 (2)Er2ii—S1—Ba1i147.08 (4)
S2vii—Er2—Ba1123.95 (2)Ba1ii—S1—Ba1i77.89 (2)
S2viii—Er2—Ba1123.95 (2)Er1—S2—Er2vii120.17 (3)
Ba1ix—Er2—Ba1111.755 (5)Er1—S2—Er2viii120.17 (3)
S3v—Ba1—S3iv78.06 (2)Er2vii—S2—Er2viii93.51 (3)
S3v—Ba1—S1iv116.92 (2)Er1—S2—Ba1i97.16 (3)
S3iv—Ba1—S1iv70.19 (2)Er2vii—S2—Ba1i138.40 (4)
S3v—Ba1—S1v70.19 (2)Er2viii—S2—Ba1i81.498 (14)
S3iv—Ba1—S1v116.92 (2)Er1—S2—Ba1ii97.16 (3)
S1iv—Ba1—S1v77.89 (2)Er2vii—S2—Ba1ii81.498 (14)
S3v—Ba1—S2iv145.12 (3)Er2viii—S2—Ba1ii138.40 (4)
S3iv—Ba1—S2iv92.639 (19)Ba1i—S2—Ba1ii75.87 (2)
S1iv—Ba1—S2iv90.26 (2)Er1vi—S3—Er1i95.05 (3)
S1v—Ba1—S2iv141.02 (3)Er1vi—S3—Er1ii95.05 (3)
S3v—Ba1—S2v92.639 (19)Er1i—S3—Er1ii93.58 (3)
S3iv—Ba1—S2v145.12 (3)Er1vi—S3—Ba1ii98.65 (3)
S1iv—Ba1—S2v141.02 (3)Er1i—S3—Ba1ii164.41 (4)
S1v—Ba1—S2v90.26 (2)Er1ii—S3—Ba1ii92.590 (8)
S2iv—Ba1—S2v75.87 (2)Er1vi—S3—Ba1i98.65 (3)
S3v—Ba1—S4x73.20 (2)Er1i—S3—Ba1i92.590 (8)
S3iv—Ba1—S4x73.20 (2)Er1ii—S3—Ba1i164.41 (4)
S1iv—Ba1—S4x138.242 (15)Ba1ii—S3—Ba1i78.07 (2)
S1v—Ba1—S4x138.242 (15)Er1iv—S4—Er1v95.82 (3)
S2iv—Ba1—S4x71.93 (2)Er1iv—S4—Er2132.085 (15)
S2v—Ba1—S4x71.93 (2)Er1v—S4—Er2132.085 (15)
S3v—Ba1—S4135.514 (16)Er1iv—S4—Ba1ix95.91 (3)
S3iv—Ba1—S4135.514 (16)Er1v—S4—Ba1ix95.91 (3)
S1iv—Ba1—S468.06 (2)Er2—S4—Ba1ix80.37 (3)
S1v—Ba1—S468.06 (2)Er1iv—S4—Ba195.84 (3)
S2iv—Ba1—S473.05 (2)Er1v—S4—Ba195.84 (3)
S2v—Ba1—S473.05 (2)Er2—S4—Ba182.05 (3)
S4x—Ba1—S4135.144 (10)Ba1ix—S4—Ba1162.42 (3)
S3v—Ba1—Er2x106.592 (19)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y+1, z1/2; (iii) x1/2, y, z+1/2; (iv) x+1/2, y+1, z+1/2; (v) x+1/2, y, z+1/2; (vi) x+1/2, y, z+1/2; (vii) x+1, y+1, z+1; (viii) x+1, y, z+1; (ix) x+1/2, y, z+3/2; (x) x1/2, y, z+3/2; (xi) x, y+1, z; (xii) x, y1, z.
Acknowledgements top

The research was kindly supported at Northwestern University by the US Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division and Division of Materials Science and Engineering Grant ER-15522. Use was made of the IMSERC X-ray Facility at Northwestern University, supported by the International Institute of Nanotechnology (IIN).

references
References top

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Bugaris, D. E. & Ibers, J. A. (2008). J. Solid State Chem. 181, 3189–3193.

Bugaris, D. E. & Ibers, J. A. (2009). Acta Cryst. C65, i60–i62.

Carpenter, J. D. & Hwu, S.-J. (1992). Acta Cryst. C48, 1164–1167.

Decker, B. F. & Kasper, J. S. (1957). Acta Cryst. 10, 332–337.

Flahaut, J., Guittard, M., Patrie, M., Pardo, M. P., Golabi, S. M. & Domange, L. (1965). Acta Cryst. 19, 14–19.

Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.

Haneveld, A. J. K. & Jellinek, F. (1969). J. Less Common Met. 18, 123–129.

Narducci, A. A., Yang, Y., Digman, M. A., Sipes, A. B. & Ibers, J. A. (2000). J. Alloys Compd, 303–304, 432–439.

Palmer, D. (2012). CrystalMaker Software. CrystalMaker Software Ltd, Oxfordshire, England.

Patrie, M., Golabi, S. M., Flahaut, J. & Domange, L. (1964). C. R. Hebd. Seances Acad. Sci. 259, 4039–4042.

Schurz, C. M. & Schleid, T. (2011). Crystals, 1, 78–86.

Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.