supplementary materials


bt6888 scheme

Acta Cryst. (2013). E69, m170-m171    [ doi:10.1107/S1600536813004650 ]

cis-Chlorido(ethylamine)bis(propane-1,3-diamine)cobalt(III) dichloride

V. Maheshwaran, V. Thiruselvam, M. Manjunathan, K. Anbalagan and M. N. G. Ponnuswamy

Abstract top

In the title compound, [CoCl(C2H7N)(C3H10N2)2]Cl2, the CoIII ion has a distorted octahedral coordination environment and is surrounded by four N atoms in the equatorial plane, with the other N and Cl atoms occupying the axial positions. The crystal packing is stabilized by N-H...Cl hydrogen bonds, forming a layered arrangement parallel to (1-10).

Comment top

In recent years, considerable effort has been dedicated to the design and synthesis of supramolecular architectures of coordination complexes (Lehn, 1995; Khlobystov et al.,2001). The primary reason for the interest in such complexes is their new and versatile topologies and potential applications in functional materials (Desiraju, 1995; Seo et al., 2000).

The interaction of transition metal polyamine complexes of cobalt(III) with DNA has received considerable attention in the recent years. Using mixed ligand complexes, it is possible to systematically vary parameters of interest by changing the properties of the interacting units either by the use of suitable substituents or simply by changing the nature of ancillary ligand.

In addition, cobalt(III) complexes have received a sustained high level of attention due to their relevance in various redox processes in biological systems and act as promising agents for antitumor, anthelmintic, antiparasitic, antibiotic and antimicrobial activities, as well as their multiple applications in fields of medicine and drug delivery (Chang et al., 2010). Against this background and to ascertain the molecular structure and conformation of the title compound, the crystal structure determination has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The molecular geometry is not a perfect octahedron. The metal centre is surrounded by four N atoms in an equatorial plane, with the other N and Cl atoms occupying the axial positions.

The bond lengths [Co—N] and [Co—Cl] are comparable with the values reported in the literature (Lee et al., 2007; Ramesh et al., 2008; Anbalagan et al., 2009; Ravichandran et al., 2009).

The packing of the molecules viewed down the a axis is shown in Fig. 2. The packing is stabilized by N—H···Cl and N—H···N types of inter- and intramolecular interaction.

Related literature top

For supermolecular structures, see: Desiraju (1995); Khlobystov et al. (2001); Lehn (1995); Seo et al. (2000). For CoIII complexes, see: Chang et al. (2010). For related and comparable structures, see: Anbalagan et al. (2009); Lee et al. (2007); Ramesh et al. (2008); Ravichandran et al. (2009). For the preparation of (1,3-diaminopropane)cobalt(III), see: Bailar & Work (1946).

Experimental top

2 grams of trans-[CoIII(tn)2Cl2]Cl solid was made in the path using 3–4 drops of water. To the solid mass, about 0.12M ethyl amine (EtNH2) was dropped for 20 min and mixed well. The grinding was continued until the colour turned dull green to red (Bailar & Work, 1946). The reaction mixture was set aside until no further change was observed and the product was allowed to stand overnight. Finally, the solid was washed. The final solid was dissolved in 5–10 ml of water pre-heated to 70°C and allowed to crystallize using hot acidified water. Finally Microcrystalline pink color crystal was retrieved (yield 0.85 g). The crystals were filtered, washed with ethanol and dried over vacuum. X-ray quality crystals were obtained by recrystallization from hot acidified distilled water.

Refinement top

All H atoms were discernable in a difference map. C-bound H atoms were positioned geometrically (C–H =0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) =1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms. The H atoms bonded to N were freely refined.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The packing of the molecules viewed down a axis.
cis-Chlorido(ethylamine)bis(propane-1,3-diamine)cobalt(III) dichloride top
Crystal data top
[CoCl(C2H7N)(C3H10N2)2]Cl2Z = 2
Mr = 358.63F(000) = 376
Triclinic, P1Dx = 1.547 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8847 (4) ÅCell parameters from 2784 reflections
b = 8.0627 (4) Åθ = 3.4–29.0°
c = 12.6526 (5) ŵ = 1.62 mm1
α = 102.780 (3)°T = 293 K
β = 99.936 (4)°Block, yellow
γ = 92.580 (4)°0.45 × 0.35 × 0.35 mm
V = 769.76 (6) Å3
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2711 independent reflections
Radiation source: fine-focus sealed tube2299 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 99
Tmin = 0.600, Tmax = 1.000k = 99
4965 measured reflectionsl = 1512
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.036P)2]
where P = (Fo2 + 2Fc2)/3
2711 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[CoCl(C2H7N)(C3H10N2)2]Cl2γ = 92.580 (4)°
Mr = 358.63V = 769.76 (6) Å3
Triclinic, P1Z = 2
a = 7.8847 (4) ÅMo Kα radiation
b = 8.0627 (4) ŵ = 1.62 mm1
c = 12.6526 (5) ÅT = 293 K
α = 102.780 (3)°0.45 × 0.35 × 0.35 mm
β = 99.936 (4)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2299 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Rint = 0.018
Tmin = 0.600, Tmax = 1.000θmax = 25.0°
4965 measured reflectionsStandard reflections: 0
2711 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060Δρmax = 0.30 e Å3
S = 0.99Δρmin = 0.35 e Å3
2711 reflectionsAbsolute structure: ?
194 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7176 (3)0.6154 (3)0.98937 (17)0.0278 (5)
H1A0.77050.61461.06440.033*
H1B0.62870.52100.96320.033*
C20.6360 (3)0.7792 (3)0.98931 (16)0.0289 (5)
H2A0.72650.87171.00560.035*
H2B0.56910.80051.04770.035*
C30.5193 (3)0.7803 (3)0.88121 (16)0.0253 (5)
H3A0.43080.68580.86370.030*
H3B0.46220.88530.88960.030*
C41.0645 (3)0.9053 (3)0.74479 (16)0.0364 (6)
H4A1.16070.83880.72950.044*
H4B1.11121.02090.78200.044*
C50.9486 (4)0.9081 (3)0.63747 (19)0.0460 (7)
H5A0.84560.96300.65260.055*
H5B1.00820.97440.59750.055*
C60.8976 (3)0.7309 (3)0.56745 (17)0.0359 (6)
H6A0.84940.73730.49270.043*
H6B0.99960.66830.56500.043*
C70.4777 (3)0.3755 (3)0.7108 (2)0.0333 (5)
H7A0.42070.43160.65570.040*
H7B0.44830.42890.78110.040*
C80.4119 (3)0.1879 (3)0.6799 (2)0.0432 (7)
H8A0.28880.17760.67500.065*
H8B0.46560.13260.73530.065*
H8C0.43960.13490.61000.065*
N10.8505 (2)0.5908 (2)0.91895 (14)0.0205 (4)
N20.6139 (2)0.7664 (2)0.78807 (14)0.0202 (4)
N30.9726 (3)0.8316 (2)0.81887 (14)0.0210 (4)
N40.7690 (3)0.6375 (3)0.61050 (14)0.0223 (4)
N50.6662 (2)0.3992 (2)0.71863 (16)0.0222 (4)
Cl11.03872 (7)0.47044 (7)0.74016 (4)0.03006 (14)
Cl20.79985 (7)0.17837 (6)0.92229 (4)0.02905 (14)
Cl30.36383 (7)0.73553 (7)0.55285 (4)0.03125 (14)
Co10.80944 (3)0.62246 (3)0.766006 (19)0.01506 (9)
H2C0.543 (3)0.741 (3)0.7294 (17)0.024 (6)*
H3C0.926 (3)0.908 (3)0.8502 (17)0.020 (7)*
H3D1.052 (3)0.797 (3)0.8632 (17)0.022 (6)*
H4D0.685 (3)0.678 (3)0.5978 (17)0.019 (7)*
H1C0.882 (3)0.490 (3)0.9103 (16)0.020 (6)*
H4C0.756 (3)0.532 (3)0.5693 (16)0.020 (6)*
H2D0.652 (3)0.867 (3)0.7894 (17)0.030 (7)*
H5D0.693 (3)0.360 (3)0.659 (2)0.037 (7)*
H1D0.937 (3)0.652 (3)0.9535 (17)0.024 (6)*
H5C0.717 (3)0.339 (3)0.763 (2)0.042 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0319 (13)0.0330 (12)0.0235 (11)0.0038 (10)0.0115 (10)0.0120 (10)
C20.0376 (14)0.0307 (12)0.0203 (11)0.0054 (10)0.0138 (10)0.0030 (9)
C30.0241 (12)0.0242 (11)0.0291 (11)0.0077 (9)0.0117 (9)0.0033 (9)
C40.0341 (14)0.0469 (15)0.0264 (12)0.0202 (12)0.0066 (11)0.0086 (11)
C50.0562 (17)0.0496 (16)0.0346 (13)0.0224 (14)0.0048 (12)0.0233 (12)
C60.0319 (13)0.0576 (16)0.0186 (11)0.0099 (12)0.0059 (10)0.0113 (11)
C70.0252 (12)0.0287 (12)0.0428 (13)0.0039 (10)0.0049 (11)0.0037 (10)
C80.0386 (15)0.0320 (14)0.0556 (16)0.0137 (11)0.0004 (13)0.0130 (12)
N10.0189 (10)0.0188 (10)0.0230 (9)0.0011 (8)0.0022 (8)0.0047 (8)
N20.0198 (10)0.0212 (10)0.0184 (9)0.0030 (8)0.0005 (8)0.0039 (8)
N30.0210 (10)0.0211 (10)0.0206 (9)0.0018 (8)0.0032 (8)0.0051 (8)
N40.0196 (11)0.0259 (11)0.0188 (9)0.0004 (9)0.0013 (8)0.0021 (8)
N50.0224 (10)0.0205 (9)0.0213 (10)0.0017 (8)0.0027 (8)0.0016 (8)
Cl10.0230 (3)0.0349 (3)0.0332 (3)0.0107 (2)0.0084 (2)0.0057 (2)
Cl20.0321 (3)0.0204 (3)0.0321 (3)0.0007 (2)0.0000 (2)0.0061 (2)
Cl30.0277 (3)0.0351 (3)0.0248 (3)0.0028 (2)0.0000 (2)0.0022 (2)
Co10.01382 (15)0.01541 (15)0.01497 (15)0.00020 (10)0.00225 (10)0.00205 (10)
Geometric parameters (Å, º) top
C1—N11.481 (3)C7—H7A0.9700
C1—C21.495 (3)C7—H7B0.9700
C1—H1A0.9700C8—H8A0.9600
C1—H1B0.9700C8—H8B0.9600
C2—C31.513 (3)C8—H8C0.9600
C2—H2A0.9700N1—Co11.9811 (17)
C2—H2B0.9700N1—H1C0.85 (2)
C3—N21.486 (2)N1—H1D0.82 (2)
C3—H3A0.9700N2—Co11.9921 (18)
C3—H3B0.9700N2—H2C0.83 (2)
C4—N31.483 (2)N2—H2D0.84 (2)
C4—C51.506 (3)N3—Co11.9887 (17)
C4—H4A0.9700N3—H3C0.79 (2)
C4—H4B0.9700N3—H3D0.87 (2)
C5—C61.502 (3)N4—Co11.9698 (18)
C5—H5A0.9700N4—H4D0.76 (2)
C5—H5B0.9700N4—H4C0.88 (2)
C6—N41.482 (3)N5—Co11.9953 (16)
C6—H6A0.9700N5—H5D0.82 (2)
C6—H6B0.9700N5—H5C0.88 (3)
C7—N51.474 (3)Cl1—Co12.2591 (6)
C7—C81.519 (3)
N1—C1—C2112.37 (17)H8B—C8—H8C109.5
N1—C1—H1A109.1C1—N1—Co1122.70 (14)
C2—C1—H1A109.1C1—N1—H1C111.0 (14)
N1—C1—H1B109.1Co1—N1—H1C102.2 (13)
C2—C1—H1B109.1C1—N1—H1D106.7 (15)
H1A—C1—H1B107.9Co1—N1—H1D108.1 (14)
C1—C2—C3113.66 (17)H1C—N1—H1D105 (2)
C1—C2—H2A108.8C3—N2—Co1124.93 (14)
C3—C2—H2A108.8C3—N2—H2C108.5 (15)
C1—C2—H2B108.8Co1—N2—H2C106.5 (15)
C3—C2—H2B108.8C3—N2—H2D106.4 (15)
H2A—C2—H2B107.7Co1—N2—H2D105.9 (16)
N2—C3—C2112.96 (17)H2C—N2—H2D102 (2)
N2—C3—H3A109.0C4—N3—Co1122.95 (13)
C2—C3—H3A109.0C4—N3—H3C105.6 (15)
N2—C3—H3B109.0Co1—N3—H3C109.9 (15)
C2—C3—H3B109.0C4—N3—H3D105.5 (14)
H3A—C3—H3B107.8Co1—N3—H3D100.6 (14)
N3—C4—C5112.45 (18)H3C—N3—H3D112 (2)
N3—C4—H4A109.1C6—N4—Co1120.95 (14)
C5—C4—H4A109.1C6—N4—H4D105.3 (16)
N3—C4—H4B109.1Co1—N4—H4D109.1 (16)
C5—C4—H4B109.1C6—N4—H4C105.5 (13)
H4A—C4—H4B107.8Co1—N4—H4C107.6 (13)
C6—C5—C4111.3 (2)H4D—N4—H4C108 (2)
C6—C5—H5A109.4C7—N5—Co1125.65 (15)
C4—C5—H5A109.4C7—N5—H5D110.9 (17)
C6—C5—H5B109.4Co1—N5—H5D100.9 (16)
C4—C5—H5B109.4C7—N5—H5C109.0 (16)
H5A—C5—H5B108.0Co1—N5—H5C103.4 (16)
N4—C6—C5111.91 (19)H5D—N5—H5C105 (2)
N4—C6—H6A109.2N4—Co1—N1176.20 (8)
C5—C6—H6A109.2N4—Co1—N394.63 (7)
N4—C6—H6B109.2N1—Co1—N388.27 (8)
C5—C6—H6B109.2N4—Co1—N288.57 (8)
H6A—C6—H6B107.9N1—Co1—N293.94 (7)
N5—C7—C8111.9 (2)N3—Co1—N289.27 (9)
N5—C7—H7A109.2N4—Co1—N588.27 (8)
C8—C7—H7A109.2N1—Co1—N588.62 (8)
N5—C7—H7B109.2N3—Co1—N5173.98 (9)
C8—C7—H7B109.2N2—Co1—N596.09 (8)
H7A—C7—H7B107.9N4—Co1—Cl190.49 (7)
C7—C8—H8A109.5N1—Co1—Cl187.13 (6)
C7—C8—H8B109.5N3—Co1—Cl188.21 (7)
H8A—C8—H8B109.5N2—Co1—Cl1177.23 (6)
C7—C8—H8C109.5N5—Co1—Cl186.49 (6)
H8A—C8—H8C109.5
N1—C1—C2—C370.5 (2)C1—N1—Co1—N575.46 (17)
C1—C2—C3—N264.4 (2)C1—N1—Co1—Cl1162.02 (16)
N3—C4—C5—C668.7 (3)C4—N3—Co1—N420.0 (2)
C4—C5—C6—N473.7 (3)C4—N3—Co1—N1157.5 (2)
C2—C1—N1—Co148.3 (2)C4—N3—Co1—N2108.52 (19)
C2—C3—N2—Co137.7 (2)C4—N3—Co1—Cl170.34 (19)
C5—C4—N3—Co143.3 (3)C3—N2—Co1—N4161.39 (17)
C5—C6—N4—Co151.5 (3)C3—N2—Co1—N115.75 (17)
C8—C7—N5—Co1175.91 (15)C3—N2—Co1—N3103.96 (17)
C6—N4—Co1—N323.7 (2)C3—N2—Co1—N573.28 (17)
C6—N4—Co1—N2112.81 (19)C7—N5—Co1—N489.73 (19)
C6—N4—Co1—N5151.1 (2)C7—N5—Co1—N192.47 (19)
C6—N4—Co1—Cl164.58 (19)C7—N5—Co1—N21.35 (19)
C1—N1—Co1—N3109.69 (17)C7—N5—Co1—Cl1179.67 (18)
C1—N1—Co1—N220.54 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2D···Cl2i0.84 (2)2.77 (2)3.5033 (19)145.6 (18)
N3—H3C···Cl2i0.79 (2)2.49 (2)3.275 (2)168 (2)
N1—H1D···Cl2ii0.82 (2)2.52 (2)3.3278 (19)173.2 (18)
N3—H3D···Cl2ii0.87 (2)2.72 (2)3.472 (2)145.6 (18)
N4—H4C···Cl3iii0.88 (2)2.40 (2)3.261 (2)163.7 (19)
N5—H5D···Cl3iii0.82 (2)2.57 (2)3.329 (2)154 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+2; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2D···Cl2i0.84 (2)2.77 (2)3.5033 (19)145.6 (18)
N3—H3C···Cl2i0.79 (2)2.49 (2)3.275 (2)168 (2)
N1—H1D···Cl2ii0.82 (2)2.52 (2)3.3278 (19)173.2 (18)
N3—H3D···Cl2ii0.87 (2)2.72 (2)3.472 (2)145.6 (18)
N4—H4C···Cl3iii0.88 (2)2.40 (2)3.261 (2)163.7 (19)
N5—H5D···Cl3iii0.82 (2)2.57 (2)3.329 (2)154 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+2; (iii) x+1, y+1, z+1.
Acknowledgements top

KA is thankful to the CSIR, New Delhi (Lr: No. 01 (2570)/12/EMR-II/3.4.2012) for financial support through a major research project. The authors are thankful to the Department of Chemistry, Pondicherry University, for the single-crystal XRD instrumentation facility.

references
References top

Anbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836–m837.

Bailar, J. C. & Work, J. B. (1946). J. Am. Chem. Soc. 68, 232–235.

Chang, E. L., Simmers, C. & Andrew Knight, D. (2010). Pharmaceuticals, 3, 1711–1728.

Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Khlobystov, A. N., Blake, A. J., Champness, N. R., Lemenovskii, D. A., Majouga, A. G., Zyk, N. V. & Schroder, M. (2001). Coord. Chem. Rev. 222, 155–192.

Lee, D. N., Lee, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2007). Acta Cryst. E63, m1949–m1950.

Lehn, J. M. (1995). In Supramolecular Chemistry. Concepts and Perspectives. Weinheim: VCH.

Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.

Ramesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300–m301.

Ravichandran, K., Ramesh, P., Tamilselvan, M., Anbalagan, K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, m1174–m1175.

Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. & Kim, K. (2000). Nature (London), 404, 982–986.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.