organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o438-o439

Methyl 11-hy­dr­oxy-9-[1-(4-meth­­oxy­phen­yl)-4-oxo-3-phenyl­azetidin-2-yl]-18-oxo-10-oxa-2-aza­penta­cyclo­[9.7.0.01,8.02,6.012,17]octa­deca-12(17),13,15-triene-8-carboxyl­ate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 8 February 2013; accepted 19 February 2013; online 23 February 2013)

In the title compound, C34H32N2O7, the furan ring adopts a twist conformation and both the pyrrolidine rings adopt envelope conformations with O and C as flap atoms. The β-lactam ring makes a dihedral angles of 80.20 (10)° with the furan ring, of 75.55 (10)° with the pyrrolidine ring, of 12.26 (10)° with the meth­oxy­phenyl ring and of 73.77 (13)° with the phenyl ring. The O atom attached to the β-lactam ring deviates by 0.0385 (13) Å from the ring plane. The mol­ecular conformation is stabilized by intra­molecular O—H⋯N and C—H⋯O hydrogen bonds. The packing of the crystal is stabilized by inter­molecular C—H⋯O hydrogen bonds, which form a chain running along the b axis.

Related literature

For general background to β-lactams, see: Banik & Becker (2000[Banik, B. K. & Becker, F. F. (2000). Tetrahedron Lett. 41, 6551-6554.]); Brakhage (1998[Brakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547-585.]). For a related structure, see: Sundaramoorthy et al. (2012[Sundaramoorthy, S., Rajesh, R., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2200-o2201.]).

[Scheme 1]

Experimental

Crystal data
  • C34H32N2O7

  • Mr = 580.62

  • Monoclinic, P 21 /c

  • a = 10.9030 (5) Å

  • b = 11.8792 (5) Å

  • c = 22.4457 (10) Å

  • β = 93.963 (3)°

  • V = 2900.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.982

  • 28525 measured reflections

  • 7293 independent reflections

  • 4952 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.127

  • S = 1.02

  • 7293 reflections

  • 394 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯N2 0.91 (2) 1.95 (2) 2.6120 (16) 127.8 (19)
C6—H6⋯O1 0.93 2.51 3.122 (2) 124
C8—H8⋯O1i 0.98 2.52 3.4047 (19) 151
C28—H28A⋯O4ii 0.97 2.58 3.5069 (19) 161
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The role of β-lactam antibiotics is well known (Banik & Becker, 2000). The most commonly used β-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin (Brakhage, 1998). In view of potential applications, the crystal structure determination of the titled β-lactam derivative was carried out. In the title compound (Fig. 1), the β lactam ring makes a dihedral angle of 80.20 (10)° with the furan ring (C17/C18/C19/C27/O3) and a dihedral angle of 75.55 (10)° with the pyrrolidine ring (C18/C19/C28/C29/N2). The β lactam ring makes a dihedral angle of 12.26 (10)° with the methoxy phenyl ring and a dihedral angle of 73.77 (13)° with unsubstituted phenyl ring.

Both the pyrrolidine rings adopt an envelope conformation and the furan ring adopts a twist conformation. The furan ring makes a dihedral angle of 81.29 (8)° with the pyrrolidine ring, a dihedral angle of 72.61 (9)° with the other pyrrolidine ring(N2/C29/C30/C31/C32). The furan ring makes a dihedral angle of 72.26 (8)° with the cyclopentane ring(C19/C20/C21/C26/C27) system. The oxygen atom (O1) attached with the β lactam ring deviates by 0.0385 (13)Å from the ring plane. The hydroxyl oxygen atom (O4) attached with the furan ring deviates by -0.6644 (11)Å from the ring plane. The oxygen atom (O5) attached to the cyclopentane ring deviates by 0.2042 (13)Å from the ring plane. The molecular conformation is stabilized by an intramolecular O-H···N and C-H···O hydrogen bonds. The packing of the crystal is stabilized by intermolecular C—H···O hydrogen bonds (Fig. 2).

Related literature top

For general background to β-lactams, see: Banik & Becker (2000); Brakhage (1998). For a related structure, see: Sundaramoorthy et al. (2012).

Experimental top

A mixture of methyl 2-(hydroxy(1-(4-methoxyphenyl)-4-oxo-3-phenylazetidin-2-yl) methyl)acrylate (1.0 equiv.), ninhydrin (1.1 equiv.) and proline (1.1 equiv.) was refluxed in methanol. Completion of the reaction was evidenced by TLC analysis. After completion of the reaction the solvent was evaporated under reduced pressure. The reaction mixture was dissolved in dichloromethane and with water followed by brine solution. The organic layer was separated and evaporated under reduced pressure. The crude mixture was purified by column chromatography using ethyl acetate and hexane as eluent (3: 7). The product was dissolved in chloroform and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent for 48 hours resulting in the formation of single crystals.

Refinement top

The hydrogen atoms bonded to carbon atoms were placed in calculated positions with C—H = 0.93 Å to 0.97 Å. They were refined using a riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C) for other H atoms. The hydroxyl H atom was freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down b axis. H-atoms not involved in H-bonds have been excluded for clarity.
Methyl 11-hydroxy-9-[1-(4-methoxyphenyl)-4-oxo-3-phenylazetidin-2-yl]-18-oxo-10-oxa-2-azapentacyclo[9.7.0.01,8.02,6.012,17]octadeca-12 (17),13,15-triene-8-carboxylate top
Crystal data top
C34H32N2O7F(000) = 1224
Mr = 580.62Dx = 1.330 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7293 reflections
a = 10.9030 (5) Åθ = 1.8–28.5°
b = 11.8792 (5) ŵ = 0.09 mm1
c = 22.4457 (10) ÅT = 293 K
β = 93.963 (3)°Block, colourless
V = 2900.2 (2) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
7293 independent reflections
Radiation source: fine-focus sealed tube4952 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and ϕ scansθmax = 28.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.973, Tmax = 0.982k = 1513
28525 measured reflectionsl = 2930
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0518P)2 + 0.680P]
where P = (Fo2 + 2Fc2)/3
7293 reflections(Δ/σ)max < 0.001
394 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C34H32N2O7V = 2900.2 (2) Å3
Mr = 580.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9030 (5) ŵ = 0.09 mm1
b = 11.8792 (5) ÅT = 293 K
c = 22.4457 (10) Å0.30 × 0.25 × 0.20 mm
β = 93.963 (3)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
7293 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4952 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.982Rint = 0.029
28525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.20 e Å3
7293 reflectionsΔρmin = 0.21 e Å3
394 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2979 (2)0.34508 (19)0.00464 (11)0.0799 (6)
H1A1.23340.39960.01120.120*
H1B1.32940.32530.04210.120*
H1C1.36280.37640.02130.120*
C21.18730 (15)0.26419 (15)0.07217 (8)0.0535 (4)
C31.11793 (16)0.17477 (14)0.09004 (8)0.0543 (4)
H31.12020.10660.06970.065*
C41.04518 (15)0.18516 (14)0.13763 (7)0.0498 (4)
H40.99890.12430.14930.060*
C51.04133 (13)0.28631 (13)0.16787 (7)0.0440 (3)
C61.11545 (18)0.37376 (16)0.15177 (9)0.0649 (5)
H61.11650.44080.17320.078*
C71.18787 (18)0.36266 (17)0.10421 (9)0.0686 (5)
H71.23740.42220.09370.082*
C80.86477 (13)0.22907 (12)0.23618 (7)0.0399 (3)
H80.89500.15550.25040.048*
C90.85697 (14)0.31425 (13)0.28832 (7)0.0445 (4)
H90.77910.35570.28510.053*
C100.95829 (15)0.37874 (14)0.25890 (7)0.0487 (4)
C110.88911 (15)0.27730 (16)0.35126 (8)0.0547 (4)
C120.9571 (2)0.1818 (2)0.36449 (10)0.0858 (7)
H120.98490.13840.33370.103*
C130.9844 (3)0.1495 (3)0.42341 (15)0.1194 (11)
H131.02750.08320.43190.143*
C140.9481 (3)0.2149 (4)0.46853 (14)0.1249 (13)
H140.96680.19350.50800.150*
C150.8846 (3)0.3113 (4)0.45635 (12)0.1164 (11)
H150.86200.35680.48750.140*
C160.8533 (2)0.3423 (2)0.39777 (9)0.0815 (6)
H160.80790.40750.38980.098*
C170.75450 (13)0.21783 (11)0.19174 (7)0.0373 (3)
H170.78390.20090.15240.045*
C180.65972 (12)0.12687 (11)0.20676 (6)0.0359 (3)
C190.53655 (13)0.17350 (11)0.17316 (6)0.0355 (3)
C200.50045 (14)0.11538 (13)0.11319 (7)0.0428 (3)
C210.54296 (15)0.18742 (13)0.06529 (7)0.0456 (4)
C220.54270 (18)0.16423 (16)0.00450 (8)0.0594 (5)
H220.51230.09630.01090.071*
C230.5883 (2)0.24404 (19)0.03211 (8)0.0691 (5)
H230.58880.23020.07290.083*
C240.6338 (2)0.34542 (19)0.00889 (9)0.0719 (6)
H240.66440.39860.03440.086*
C250.63443 (17)0.36850 (16)0.05125 (8)0.0596 (5)
H250.66540.43630.06660.071*
C260.58787 (14)0.28845 (13)0.08838 (7)0.0440 (3)
C270.57408 (13)0.29586 (11)0.15455 (6)0.0390 (3)
C280.62610 (13)0.12351 (13)0.27200 (7)0.0417 (3)
H28A0.61110.04660.28410.050*
H28B0.69250.15430.29810.050*
C290.50982 (14)0.19455 (12)0.27545 (6)0.0420 (3)
H290.53150.27370.28270.050*
C300.41877 (16)0.15497 (15)0.31990 (8)0.0542 (4)
H30A0.45300.09330.34400.065*
H30B0.39820.21600.34610.065*
C310.30548 (17)0.11662 (17)0.28160 (9)0.0624 (5)
H31A0.26890.05070.29870.075*
H31B0.24440.17600.27770.075*
C320.35449 (14)0.08952 (14)0.22214 (8)0.0515 (4)
H32A0.39440.01650.22270.062*
H32B0.28980.09100.19030.062*
C330.69337 (13)0.01011 (12)0.18482 (7)0.0423 (3)
C340.7789 (2)0.08957 (17)0.10623 (11)0.0783 (6)
H34A0.82590.13530.13470.117*
H34B0.82630.07530.07260.117*
H34C0.70450.12820.09320.117*
N10.96525 (11)0.29978 (11)0.21540 (6)0.0457 (3)
N20.44375 (11)0.18163 (10)0.21577 (5)0.0389 (3)
O11.01442 (13)0.46527 (10)0.26924 (6)0.0684 (4)
O21.25060 (13)0.24733 (12)0.02213 (6)0.0724 (4)
O30.68707 (9)0.32126 (8)0.18767 (5)0.0418 (2)
O40.48789 (10)0.37590 (9)0.16712 (5)0.0473 (3)
O50.44960 (12)0.02532 (10)0.10739 (5)0.0603 (3)
O60.74874 (11)0.01595 (9)0.13371 (5)0.0533 (3)
O70.67044 (13)0.07644 (9)0.20906 (6)0.0680 (4)
H4A0.436 (2)0.3390 (19)0.1904 (10)0.085 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0753 (13)0.0779 (15)0.0903 (15)0.0008 (11)0.0333 (12)0.0179 (12)
C20.0455 (8)0.0526 (10)0.0629 (11)0.0034 (8)0.0083 (7)0.0055 (8)
C30.0618 (10)0.0396 (9)0.0621 (10)0.0056 (8)0.0088 (8)0.0027 (8)
C40.0539 (9)0.0366 (9)0.0594 (10)0.0018 (7)0.0073 (8)0.0042 (7)
C50.0364 (7)0.0397 (8)0.0554 (9)0.0031 (6)0.0007 (6)0.0012 (7)
C60.0669 (11)0.0501 (11)0.0793 (13)0.0202 (9)0.0172 (10)0.0124 (9)
C70.0626 (11)0.0613 (12)0.0841 (14)0.0220 (9)0.0210 (10)0.0006 (10)
C80.0387 (7)0.0305 (7)0.0505 (8)0.0043 (6)0.0024 (6)0.0023 (6)
C90.0422 (8)0.0377 (8)0.0532 (9)0.0034 (6)0.0006 (6)0.0080 (7)
C100.0489 (8)0.0377 (9)0.0585 (10)0.0059 (7)0.0036 (7)0.0058 (7)
C110.0479 (9)0.0587 (11)0.0562 (10)0.0191 (8)0.0065 (7)0.0042 (8)
C120.0937 (16)0.0783 (15)0.0797 (15)0.0015 (13)0.0366 (12)0.0039 (12)
C130.133 (3)0.110 (2)0.105 (2)0.0220 (19)0.064 (2)0.0228 (19)
C140.120 (3)0.168 (4)0.080 (2)0.064 (3)0.0420 (18)0.029 (2)
C150.113 (2)0.178 (3)0.0584 (15)0.048 (2)0.0026 (15)0.0205 (18)
C160.0835 (14)0.1023 (18)0.0588 (12)0.0198 (13)0.0059 (10)0.0158 (12)
C170.0400 (7)0.0248 (7)0.0469 (8)0.0032 (6)0.0016 (6)0.0028 (6)
C180.0368 (7)0.0243 (7)0.0461 (8)0.0011 (5)0.0013 (6)0.0010 (6)
C190.0389 (7)0.0249 (7)0.0422 (7)0.0013 (6)0.0019 (6)0.0012 (6)
C200.0461 (8)0.0333 (8)0.0479 (8)0.0012 (6)0.0048 (6)0.0050 (6)
C210.0505 (8)0.0408 (9)0.0446 (8)0.0029 (7)0.0035 (7)0.0006 (7)
C220.0741 (12)0.0545 (11)0.0488 (10)0.0040 (9)0.0017 (8)0.0062 (8)
C230.0831 (13)0.0789 (14)0.0461 (10)0.0060 (11)0.0093 (9)0.0025 (10)
C240.0823 (14)0.0725 (14)0.0626 (12)0.0050 (11)0.0165 (10)0.0165 (10)
C250.0670 (11)0.0507 (10)0.0614 (11)0.0087 (9)0.0070 (9)0.0086 (8)
C260.0463 (8)0.0373 (8)0.0480 (9)0.0017 (7)0.0003 (6)0.0042 (6)
C270.0433 (8)0.0252 (7)0.0476 (8)0.0016 (6)0.0032 (6)0.0004 (6)
C280.0433 (8)0.0339 (8)0.0471 (8)0.0039 (6)0.0022 (6)0.0044 (6)
C290.0537 (8)0.0283 (7)0.0436 (8)0.0013 (6)0.0015 (6)0.0033 (6)
C300.0636 (10)0.0460 (10)0.0543 (10)0.0081 (8)0.0138 (8)0.0006 (8)
C310.0552 (10)0.0572 (11)0.0771 (13)0.0034 (9)0.0202 (9)0.0052 (9)
C320.0424 (8)0.0471 (9)0.0649 (11)0.0098 (7)0.0017 (7)0.0009 (8)
C330.0376 (7)0.0266 (7)0.0621 (10)0.0005 (6)0.0012 (7)0.0041 (7)
C340.0875 (14)0.0489 (11)0.1007 (16)0.0063 (10)0.0235 (12)0.0293 (11)
N10.0413 (6)0.0365 (7)0.0594 (8)0.0099 (5)0.0042 (6)0.0073 (6)
N20.0393 (6)0.0295 (6)0.0478 (7)0.0005 (5)0.0012 (5)0.0006 (5)
O10.0796 (9)0.0453 (7)0.0804 (9)0.0263 (6)0.0065 (7)0.0161 (6)
O20.0740 (8)0.0664 (9)0.0806 (9)0.0013 (7)0.0326 (7)0.0062 (7)
O30.0457 (5)0.0239 (5)0.0543 (6)0.0041 (4)0.0071 (5)0.0014 (4)
O40.0530 (6)0.0279 (5)0.0610 (7)0.0058 (5)0.0035 (5)0.0030 (5)
O50.0784 (8)0.0415 (7)0.0596 (7)0.0196 (6)0.0040 (6)0.0111 (5)
O60.0607 (7)0.0328 (6)0.0672 (7)0.0030 (5)0.0108 (6)0.0112 (5)
O70.0825 (9)0.0265 (6)0.0970 (10)0.0006 (6)0.0210 (7)0.0024 (6)
Geometric parameters (Å, º) top
C1—O21.421 (2)C18—C191.5935 (19)
C1—H1A0.9600C19—N21.4426 (18)
C1—H1B0.9600C19—C201.540 (2)
C1—H1C0.9600C19—C271.5743 (19)
C2—C71.373 (3)C20—O51.2078 (18)
C2—O21.373 (2)C20—C211.474 (2)
C2—C31.379 (2)C21—C261.383 (2)
C3—C41.379 (2)C21—C221.392 (2)
C3—H30.9300C22—C231.370 (3)
C4—C51.382 (2)C22—H220.9300
C4—H40.9300C23—C241.390 (3)
C5—C61.380 (2)C23—H230.9300
C5—N11.405 (2)C24—C251.377 (3)
C6—C71.377 (3)C24—H240.9300
C6—H60.9300C25—C261.384 (2)
C7—H70.9300C25—H250.9300
C8—N11.4811 (18)C26—C271.506 (2)
C8—C171.514 (2)C27—O41.3797 (17)
C8—C91.554 (2)C27—O31.4264 (17)
C8—H80.9800C28—C291.529 (2)
C9—C111.498 (2)C28—H28A0.9700
C9—C101.531 (2)C28—H28B0.9700
C9—H90.9800C29—N21.4845 (19)
C10—O11.2105 (19)C29—C301.529 (2)
C10—N11.360 (2)C29—H290.9800
C11—C121.376 (3)C30—C311.525 (3)
C11—C161.377 (3)C30—H30A0.9700
C12—C131.389 (3)C30—H30B0.9700
C12—H120.9300C31—C321.506 (2)
C13—C141.357 (5)C31—H31A0.9700
C13—H130.9300C31—H31B0.9700
C14—C151.356 (5)C32—N21.4779 (19)
C14—H140.9300C32—H32A0.9700
C15—C161.385 (4)C32—H32B0.9700
C15—H150.9300C33—O71.1976 (18)
C16—H160.9300C33—O61.3344 (19)
C17—O31.4315 (16)C34—O61.445 (2)
C17—C181.5483 (19)C34—H34A0.9600
C17—H170.9800C34—H34B0.9600
C18—C331.5251 (19)C34—H34C0.9600
C18—C281.535 (2)O4—H4A0.91 (2)
O2—C1—H1A109.5O5—C20—C19125.39 (14)
O2—C1—H1B109.5C21—C20—C19107.65 (12)
H1A—C1—H1B109.5C26—C21—C22121.05 (16)
O2—C1—H1C109.5C26—C21—C20110.58 (13)
H1A—C1—H1C109.5C22—C21—C20128.37 (15)
H1B—C1—H1C109.5C23—C22—C21118.34 (17)
C7—C2—O2124.63 (16)C23—C22—H22120.8
C7—C2—C3119.12 (16)C21—C22—H22120.8
O2—C2—C3116.25 (16)C22—C23—C24120.63 (18)
C4—C3—C2120.82 (16)C22—C23—H23119.7
C4—C3—H3119.6C24—C23—H23119.7
C2—C3—H3119.6C25—C24—C23121.15 (18)
C3—C4—C5119.78 (15)C25—C24—H24119.4
C3—C4—H4120.1C23—C24—H24119.4
C5—C4—H4120.1C24—C25—C26118.46 (18)
C6—C5—C4119.20 (15)C24—C25—H25120.8
C6—C5—N1120.03 (15)C26—C25—H25120.8
C4—C5—N1120.76 (14)C21—C26—C25120.37 (15)
C7—C6—C5120.57 (17)C21—C26—C27111.31 (13)
C7—C6—H6119.7C25—C26—C27128.30 (15)
C5—C6—H6119.7O4—C27—O3108.88 (11)
C2—C7—C6120.35 (17)O4—C27—C26110.97 (12)
C2—C7—H7119.8O3—C27—C26112.64 (12)
C6—C7—H7119.8O4—C27—C19112.88 (12)
N1—C8—C17114.43 (12)O3—C27—C19106.74 (11)
N1—C8—C987.03 (10)C26—C27—C19104.68 (11)
C17—C8—C9118.12 (12)C29—C28—C18106.71 (11)
N1—C8—H8111.7C29—C28—H28A110.4
C17—C8—H8111.7C18—C28—H28A110.4
C9—C8—H8111.7C29—C28—H28B110.4
C11—C9—C10115.14 (13)C18—C28—H28B110.4
C11—C9—C8119.88 (14)H28A—C28—H28B108.6
C10—C9—C885.54 (11)N2—C29—C30105.11 (12)
C11—C9—H9111.3N2—C29—C28104.45 (11)
C10—C9—H9111.3C30—C29—C28116.18 (13)
C8—C9—H9111.3N2—C29—H29110.2
O1—C10—N1132.13 (16)C30—C29—H29110.2
O1—C10—C9135.43 (16)C28—C29—H29110.2
N1—C10—C992.43 (12)C31—C30—C29105.13 (13)
C12—C11—C16118.4 (2)C31—C30—H30A110.7
C12—C11—C9122.18 (18)C29—C30—H30A110.7
C16—C11—C9119.40 (18)C31—C30—H30B110.7
C11—C12—C13120.6 (3)C29—C30—H30B110.7
C11—C12—H12119.7H30A—C30—H30B108.8
C13—C12—H12119.7C32—C31—C30103.90 (13)
C14—C13—C12119.9 (3)C32—C31—H31A111.0
C14—C13—H13120.1C30—C31—H31A111.0
C12—C13—H13120.1C32—C31—H31B111.0
C15—C14—C13120.3 (3)C30—C31—H31B111.0
C15—C14—H14119.9H31A—C31—H31B109.0
C13—C14—H14119.9N2—C32—C31101.76 (13)
C14—C15—C16120.3 (3)N2—C32—H32A111.4
C14—C15—H15119.8C31—C32—H32A111.4
C16—C15—H15119.8N2—C32—H32B111.4
C11—C16—C15120.4 (3)C31—C32—H32B111.4
C11—C16—H16119.8H32A—C32—H32B109.3
C15—C16—H16119.8O7—C33—O6123.79 (14)
O3—C17—C8110.33 (11)O7—C33—C18124.86 (15)
O3—C17—C18105.38 (11)O6—C33—C18111.31 (12)
C8—C17—C18115.45 (12)O6—C34—H34A109.5
O3—C17—H17108.5O6—C34—H34B109.5
C8—C17—H17108.5H34A—C34—H34B109.5
C18—C17—H17108.5O6—C34—H34C109.5
C33—C18—C28111.30 (12)H34A—C34—H34C109.5
C33—C18—C17112.66 (12)H34B—C34—H34C109.5
C28—C18—C17115.66 (11)C10—N1—C5133.54 (13)
C33—C18—C19112.15 (11)C10—N1—C894.93 (12)
C28—C18—C19102.21 (11)C5—N1—C8131.52 (12)
C17—C18—C19101.99 (10)C19—N2—C32120.75 (12)
N2—C19—C20117.45 (12)C19—N2—C29106.64 (11)
N2—C19—C27108.74 (11)C32—N2—C29105.71 (12)
C20—C19—C27103.73 (11)C2—O2—C1116.40 (15)
N2—C19—C18108.44 (11)C27—O3—C17105.84 (10)
C20—C19—C18114.46 (11)C27—O4—H4A104.3 (14)
C27—C19—C18102.74 (10)C33—O6—C34116.85 (14)
O5—C20—C21126.93 (14)
C7—C2—C3—C43.1 (3)C20—C21—C26—C272.66 (18)
O2—C2—C3—C4176.14 (16)C24—C25—C26—C210.6 (3)
C2—C3—C4—C50.1 (3)C24—C25—C26—C27177.39 (17)
C3—C4—C5—C63.3 (3)C21—C26—C27—O4111.30 (14)
C3—C4—C5—N1178.20 (15)C25—C26—C27—O466.8 (2)
C4—C5—C6—C73.3 (3)C21—C26—C27—O3126.34 (13)
N1—C5—C6—C7178.19 (17)C25—C26—C27—O355.6 (2)
O2—C2—C7—C6176.06 (18)C21—C26—C27—C1910.76 (16)
C3—C2—C7—C63.1 (3)C25—C26—C27—C19171.15 (16)
C5—C6—C7—C20.0 (3)N2—C19—C27—O418.91 (16)
N1—C8—C9—C11114.51 (14)C20—C19—C27—O4106.82 (13)
C17—C8—C9—C11129.28 (15)C18—C19—C27—O4133.69 (12)
N1—C8—C9—C102.02 (11)N2—C19—C27—O3100.66 (12)
C17—C8—C9—C10114.20 (14)C20—C19—C27—O3133.60 (12)
C11—C9—C10—O160.1 (3)C18—C19—C27—O314.12 (14)
C8—C9—C10—O1178.9 (2)N2—C19—C27—C26139.71 (12)
C11—C9—C10—N1118.83 (15)C20—C19—C27—C2613.98 (14)
C8—C9—C10—N12.19 (12)C18—C19—C27—C26105.51 (12)
C10—C9—C11—C1281.4 (2)C33—C18—C28—C29135.13 (12)
C8—C9—C11—C1218.4 (2)C17—C18—C28—C2994.62 (14)
C10—C9—C11—C1696.5 (2)C19—C18—C28—C2915.24 (14)
C8—C9—C11—C16163.73 (16)C18—C28—C29—N230.73 (14)
C16—C11—C12—C132.6 (3)C18—C28—C29—C30145.98 (13)
C9—C11—C12—C13179.5 (2)N2—C29—C30—C312.24 (16)
C11—C12—C13—C142.6 (4)C28—C29—C30—C31112.64 (15)
C12—C13—C14—C150.4 (5)C29—C30—C31—C3223.24 (18)
C13—C14—C15—C161.8 (5)C30—C31—C32—N239.93 (17)
C12—C11—C16—C150.4 (3)C28—C18—C33—O716.1 (2)
C9—C11—C16—C15178.4 (2)C17—C18—C33—O7147.87 (15)
C14—C15—C16—C111.8 (4)C19—C18—C33—O797.74 (18)
N1—C8—C17—O372.08 (15)C28—C18—C33—O6165.88 (12)
C9—C8—C17—O328.17 (17)C17—C18—C33—O634.09 (16)
N1—C8—C17—C18168.60 (12)C19—C18—C33—O680.30 (14)
C9—C8—C17—C1891.14 (15)O1—C10—N1—C52.5 (3)
O3—C17—C18—C33152.85 (11)C9—C10—N1—C5176.45 (17)
C8—C17—C18—C3385.15 (15)O1—C10—N1—C8178.7 (2)
O3—C17—C18—C2877.57 (14)C9—C10—N1—C82.30 (12)
C8—C17—C18—C2844.43 (16)C6—C5—N1—C1012.3 (3)
O3—C17—C18—C1932.43 (13)C4—C5—N1—C10166.26 (17)
C8—C17—C18—C19154.43 (12)C6—C5—N1—C8169.41 (16)
C33—C18—C19—N2113.55 (13)C4—C5—N1—C812.1 (2)
C28—C18—C19—N25.74 (13)C17—C8—N1—C10117.38 (13)
C17—C18—C19—N2125.67 (11)C9—C8—N1—C102.27 (12)
C33—C18—C19—C2019.73 (16)C17—C8—N1—C563.8 (2)
C28—C18—C19—C20139.02 (12)C9—C8—N1—C5176.52 (16)
C17—C18—C19—C20101.05 (13)C20—C19—N2—C3236.47 (18)
C33—C18—C19—C27131.46 (12)C27—C19—N2—C32153.77 (12)
C28—C18—C19—C27109.25 (11)C18—C19—N2—C3295.22 (14)
C17—C18—C19—C2710.67 (13)C20—C19—N2—C29156.91 (12)
N2—C19—C20—O549.1 (2)C27—C19—N2—C2985.79 (13)
C27—C19—C20—O5169.04 (15)C18—C19—N2—C2925.22 (14)
C18—C19—C20—O579.82 (19)C31—C32—N2—C19163.18 (13)
N2—C19—C20—C21132.86 (13)C31—C32—N2—C2942.29 (15)
C27—C19—C20—C2112.89 (15)C30—C29—N2—C19157.37 (12)
C18—C19—C20—C2198.24 (14)C28—C29—N2—C1934.59 (14)
O5—C20—C21—C26175.07 (16)C30—C29—N2—C3227.70 (15)
C19—C20—C21—C266.91 (17)C28—C29—N2—C3295.08 (13)
O5—C20—C21—C225.5 (3)C7—C2—O2—C113.7 (3)
C19—C20—C21—C22172.56 (16)C3—C2—O2—C1165.57 (17)
C26—C21—C22—C230.1 (3)O4—C27—O3—C17158.04 (11)
C20—C21—C22—C23179.33 (17)C26—C27—O3—C1778.43 (13)
C21—C22—C23—C240.1 (3)C19—C27—O3—C1735.91 (14)
C22—C23—C24—C250.0 (3)C8—C17—O3—C27168.83 (11)
C23—C24—C25—C260.3 (3)C18—C17—O3—C2743.58 (14)
C22—C21—C26—C250.4 (2)O7—C33—O6—C341.6 (2)
C20—C21—C26—C25179.08 (15)C18—C33—O6—C34176.43 (14)
C22—C21—C26—C27177.83 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N20.91 (2)1.95 (2)2.6120 (16)127.8 (19)
C6—H6···O10.932.513.122 (2)124
C9—H9···O30.982.382.8220 (19)107
C17—H17···O60.982.262.7277 (17)108
C28—H28A···O70.972.352.8224 (19)109
C8—H8···O1i0.982.523.4047 (19)151
C28—H28A···O4ii0.972.583.5069 (19)161
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC34H32N2O7
Mr580.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.9030 (5), 11.8792 (5), 22.4457 (10)
β (°) 93.963 (3)
V3)2900.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.973, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
28525, 7293, 4952
Rint0.029
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.127, 1.02
No. of reflections7293
No. of parameters394
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N20.91 (2)1.95 (2)2.6120 (16)127.8 (19)
C6—H6···O10.932.513.122 (2)124
C8—H8···O1i0.982.523.4047 (19)151
C28—H28A···O4ii0.972.583.5069 (19)161
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. TS thanks the DST for an Inspire fellowship and SS thanks the UGC for a meritorious fellowship.

References

First citationBanik, B. K. & Becker, F. F. (2000). Tetrahedron Lett. 41, 6551–6554.  Web of Science CrossRef CAS
First citationBrakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547–585.  Web of Science CAS PubMed
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationSundaramoorthy, S., Rajesh, R., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2200–o2201.  CSD CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o438-o439
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds