supplementary materials


cv5378 scheme

Acta Cryst. (2013). E69, m149    [ doi:10.1107/S1600536813003358 ]

Poly[tris(dimethylformamide)([mu]3-2,4,6-triiodobenzene-1,3,5-tricarboxylato)samarium(III)]

B. Yan, D. Sheng and Y. Yang

Abstract top

In the title compound, [Sm(C9I3O6)(C3H7NO)3]n, the SmIII atom is coordinated by nine O atoms, viz. six carboxylate O atoms from three 2,4,6-triiodobenzene-1,3,5-tricarboxylate (I3BTC) ligands and three O atoms from three N,N-dimethylformamide (DMF) molecules. Each I3BTC ligand bridges three SmIII atoms, generating a three-dimensional metal-organic framework structure. The asymmetric unit contains one SmIII ion and one I3BTC anion, both situated on a threefold axis, and one DMF molecule in a general position.

Comment top

Metal-organic framework (MOF) compounds have attracted considerable interest because of their potential applications in a variety of areas, including catalysis, shape-selective adsorption, gas storage, photochemistry, and materials with magnetic properties (Nakanishi et al., 2007; Phan et al., 2010; Suib et al., 2008). The design and synthesis of MOFs with great potential for chemical and structural diversity, is one of the major current challenges in inorganic chemistry. To the best of our knowledge, MOF structure of the I3BTC ligand is not reported so far. The I3BTC ligand, besides three iodine atoms at the 2,4,6-sites of benzene ring, is same as 1,3,5- benzenetricarboxylic acid (H3BTC). Although the coordinated ability of carbonylic O atoms is influenced by the electronic properties of iodine atoms to some extent, its coordinated mode is almost no change (Daiguebonne et al., 2002). In recent years, the construction of MOFs based on H3BTC ligand has been widely investigated owing to their fascinating coordination modes (Han et al., 2012; Lu et al., 2008; Serre et al., 2004). Herein we report the hydrothermal synthesis and crystal structure of the title compound (I).

In (I), the asymmetric unit contains one SmIII ion and one I3BTC anion, both situated on a threefold axis, and one DMF molecule in general position. As shown in Fig. 1, each Sm center is coordinated by nine O atoms -six carboxylate O atoms from three ligands and three O atoms from three DMF molecules. The Sm1–O bond lengths fall in the range of 2.446 (3)–2.562 (3) Å, and the O–Sm–O angles varying from 51.702 (88)–142.712 (91)°, thus falling in the expected region. Each ligand I3BTC bridges three Sm atoms to produce a three-dimensional metal organic framework structure, while coordinated solvent molecules (DMF) exist among the pore canals by coordinating O atoms to central metal ions.

Related literature top

For applications of compounds with metal–organic framework structures (MOFs), see: Nakanishi & Tanaka (2007); Phan et al. (2010); Suib et al. (2008). For related structures, see: Daiguebonne et al. (2002); Han et al. (2012); Lu et al. (2008); Serre et al. (2004).

Experimental top

The title compound was prepared by the solvothermal reaction of Sm(NO3)3.6H2O (100 mg), 2,4,6-triiodobenzene-1,3,5-tricarboxylic acid (100 mg), DMF (4 ml) and ethanol (4 ml) at 90 °C for 72 h. The autoclave was subsequently allowed to cool to room temperature. After washing with ethanol, colourless block crystals were obtained.

Refinement top

All H atoms were placed in geometrically calculated positions (C—H = 0.93–0.96 %A), and refined using a riding model, with Uiso(H) = 1.2–1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A portion of the crystal structure of (I) showing the coordination environment of Sm1, 30% probability displacement ellipsoids and atomic numbering [symmetry codes: (i) 1 - x, 1/2 + y, 3/2 - z; (ii) 3/2 - x, 1 - y, -1/2 + z; (iii) 3/2 - x, 1 - y, -1/2 + z; (iv) 1/2 - x, -y, 1/2 + z].
Poly[tris(dimethylformamide)(µ3-2,4,6-triiodobenzene-1,3,5-tricarboxylato)samarium(III)] top
Crystal data top
[Sm(C9I3O6)(C3H7NO)3]Dx = 2.245 Mg m3
Mr = 954.43Mo Kα radiation, λ = 0.71073 Å
Cubic, P213Cell parameters from 2685 reflections
Hall symbol: P 2ac 2ab 3θ = 3.2–27.2°
a = 14.1341 (16) ŵ = 5.41 mm1
V = 2823.6 (6) Å3T = 295 K
Z = 4Prism, yellow
F(000) = 17720.16 × 0.15 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2143 independent reflections
Radiation source: fine-focus sealed tube2026 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 27.4°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 127
Tmin = 0.478, Tmax = 0.498k = 018
5119 measured reflectionsl = 1612
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0236P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.049(Δ/σ)max = 0.002
S = 1.03Δρmax = 0.72 e Å3
2143 reflectionsΔρmin = 0.62 e Å3
106 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00049 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 943 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.02 (2)
Crystal data top
[Sm(C9I3O6)(C3H7NO)3]Z = 4
Mr = 954.43Mo Kα radiation
Cubic, P213µ = 5.41 mm1
a = 14.1341 (16) ÅT = 295 K
V = 2823.6 (6) Å30.16 × 0.15 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2143 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2026 reflections with I > 2σ(I)
Tmin = 0.478, Tmax = 0.498Rint = 0.020
5119 measured reflectionsθmax = 27.4°
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.049Δρmax = 0.72 e Å3
S = 1.03Δρmin = 0.62 e Å3
2143 reflectionsAbsolute structure: Flack (1983), 943 Friedel pairs
106 parametersFlack parameter: 0.02 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. SHELXTL (Sheldrick, 2008)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.9837 (2)0.17185 (19)0.4744 (2)0.0341 (7)
C10.9099 (3)0.1640 (3)0.4268 (3)0.0219 (8)
C20.8710 (2)0.2536 (3)0.3796 (3)0.0227 (8)
C30.9151 (3)0.2914 (3)0.2996 (3)0.0236 (8)
C40.8963 (4)0.2099 (3)0.4875 (4)0.0464 (12)
H40.95750.22900.50230.056*
C50.8521 (6)0.3734 (5)0.5058 (7)0.125 (4)
H5A0.85410.40900.44790.187*
H5B0.91250.37720.53670.187*
H5C0.80420.39900.54650.187*
C60.7318 (5)0.2501 (7)0.4593 (7)0.126 (4)
H6A0.72970.18600.43700.189*
H6B0.70990.29180.41030.189*
H6C0.69200.25640.51390.189*
I11.03806 (2)0.22509 (2)0.248693 (19)0.03739 (10)
N10.8303 (4)0.2748 (3)0.4848 (4)0.0687 (14)
O10.8674 (2)0.08834 (19)0.4139 (2)0.0304 (6)
O30.8828 (2)0.1250 (2)0.4717 (2)0.0428 (8)
Sm10.999507 (13)0.000493 (13)0.500493 (13)0.01931 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0346 (17)0.0259 (14)0.0419 (17)0.0000 (12)0.0116 (13)0.0055 (12)
C10.0222 (19)0.0212 (19)0.0224 (19)0.0053 (15)0.0077 (15)0.0030 (15)
C20.0207 (19)0.022 (2)0.025 (2)0.0016 (15)0.0020 (14)0.0003 (15)
C30.0211 (19)0.026 (2)0.0234 (19)0.0046 (15)0.0047 (15)0.0007 (15)
C40.050 (3)0.042 (3)0.047 (3)0.022 (2)0.000 (2)0.005 (2)
C50.170 (9)0.061 (5)0.143 (8)0.061 (5)0.040 (7)0.039 (5)
C60.072 (5)0.147 (10)0.160 (9)0.056 (6)0.011 (5)0.011 (6)
I10.03269 (16)0.04066 (18)0.03881 (18)0.01484 (12)0.01194 (11)0.00927 (13)
N10.086 (4)0.053 (3)0.067 (3)0.046 (3)0.003 (3)0.007 (2)
O10.0303 (16)0.0243 (15)0.0365 (17)0.0005 (12)0.0038 (13)0.0024 (12)
O30.0369 (18)0.0390 (19)0.053 (2)0.0154 (14)0.0044 (15)0.0053 (16)
Sm10.01931 (8)0.01931 (8)0.01931 (8)0.00093 (7)0.00093 (7)0.00093 (7)
Geometric parameters (Å, º) top
O2—C11.245 (5)C5—H5C0.9600
O2—Sm12.474 (3)C6—N11.480 (10)
C1—O11.240 (5)C6—H6A0.9600
C1—C21.534 (5)C6—H6B0.9600
C1—Sm12.844 (4)C6—H6C0.9600
C2—C3i1.393 (5)O1—Sm12.562 (3)
C2—C31.397 (5)O3—Sm12.446 (3)
C3—C2ii1.393 (5)Sm1—O3iii2.446 (3)
C3—I12.101 (4)Sm1—O3iv2.446 (3)
C4—O31.236 (6)Sm1—O2iv2.474 (3)
C4—N11.309 (6)Sm1—O2iii2.474 (3)
C4—H40.9300Sm1—O1iii2.562 (3)
C5—N11.458 (9)Sm1—O1iv2.562 (3)
C5—H5A0.9600Sm1—C1iv2.844 (4)
C5—H5B0.9600Sm1—C1iii2.844 (4)
C1—O2—Sm193.9 (2)O3iv—Sm1—O173.51 (10)
O1—C1—O2124.2 (4)O2iv—Sm1—O1133.46 (10)
O1—C1—C2118.3 (3)O2—Sm1—O151.69 (9)
O2—C1—C2117.5 (3)O2iii—Sm1—O171.50 (9)
O1—C1—Sm164.2 (2)O3iii—Sm1—O1iii77.37 (10)
O2—C1—Sm160.20 (19)O3—Sm1—O1iii73.51 (10)
C2—C1—Sm1173.6 (2)O3iv—Sm1—O1iii142.72 (11)
C3i—C2—C3118.3 (4)O2iv—Sm1—O1iii71.50 (9)
C3i—C2—C1121.2 (3)O2—Sm1—O1iii133.46 (10)
C3—C2—C1120.5 (3)O2iii—Sm1—O1iii51.69 (9)
C2ii—C3—C2121.7 (4)O1—Sm1—O1iii118.13 (3)
C2ii—C3—I1119.9 (3)O3iii—Sm1—O1iv73.51 (10)
C2—C3—I1118.4 (3)O3—Sm1—O1iv142.72 (11)
O3—C4—N1124.4 (5)O3iv—Sm1—O1iv77.37 (10)
O3—C4—H4117.8O2iv—Sm1—O1iv51.69 (9)
N1—C4—H4117.8O2—Sm1—O1iv71.50 (9)
N1—C5—H5A109.5O2iii—Sm1—O1iv133.46 (10)
N1—C5—H5B109.5O1—Sm1—O1iv118.13 (3)
H5A—C5—H5B109.5O1iii—Sm1—O1iv118.13 (3)
N1—C5—H5C109.5O3iii—Sm1—C1152.70 (11)
H5A—C5—H5C109.5O3—Sm1—C1103.10 (11)
H5B—C5—H5C109.5O3iv—Sm1—C177.91 (10)
N1—C6—H6A109.5O2iv—Sm1—C1110.46 (10)
N1—C6—H6B109.5O2—Sm1—C125.90 (10)
H6A—C6—H6B109.5O2iii—Sm1—C177.28 (10)
N1—C6—H6C109.5O1—Sm1—C125.84 (10)
H6A—C6—H6C109.5O1iii—Sm1—C1128.98 (10)
H6B—C6—H6C109.5O1iv—Sm1—C195.43 (10)
C4—N1—C5120.9 (6)O3iii—Sm1—C1iv77.91 (10)
C4—N1—C6120.8 (6)O3—Sm1—C1iv152.70 (11)
C5—N1—C6118.3 (5)O3iv—Sm1—C1iv103.10 (11)
C1—O1—Sm189.9 (2)O2iv—Sm1—C1iv25.90 (10)
C4—O3—Sm1124.4 (3)O2—Sm1—C1iv77.28 (10)
O3iii—Sm1—O375.35 (12)O2iii—Sm1—C1iv110.46 (10)
O3iii—Sm1—O3iv75.35 (12)O1—Sm1—C1iv128.98 (10)
O3—Sm1—O3iv75.35 (12)O1iii—Sm1—C1iv95.43 (10)
O3iii—Sm1—O2iv82.62 (10)O1iv—Sm1—C1iv25.84 (10)
O3—Sm1—O2iv141.85 (10)C1—Sm1—C1iv103.16 (9)
O3iv—Sm1—O2iv128.50 (10)O3iii—Sm1—C1iii103.10 (11)
O3iii—Sm1—O2141.85 (10)O3—Sm1—C1iii77.91 (10)
O3—Sm1—O2128.50 (10)O3iv—Sm1—C1iii152.70 (11)
O3iv—Sm1—O282.62 (10)O2iv—Sm1—C1iii77.28 (10)
O2iv—Sm1—O287.46 (10)O2—Sm1—C1iii110.46 (10)
O3iii—Sm1—O2iii128.50 (10)O2iii—Sm1—C1iii25.90 (10)
O3—Sm1—O2iii82.62 (10)O1—Sm1—C1iii95.43 (10)
O3iv—Sm1—O2iii141.85 (10)O1iii—Sm1—C1iii25.84 (10)
O2iv—Sm1—O2iii87.46 (10)O1iv—Sm1—C1iii128.98 (10)
O2—Sm1—O2iii87.46 (10)C1—Sm1—C1iii103.16 (9)
O3iii—Sm1—O1142.72 (11)C1iv—Sm1—C1iii103.16 (9)
O3—Sm1—O177.37 (10)
Sm1—O2—C1—O15.3 (4)C1—O1—Sm1—O3iv96.3 (2)
Sm1—O2—C1—C2173.3 (3)C1—O1—Sm1—O2iv31.5 (3)
O1—C1—C2—C3i76.0 (5)C1—O1—Sm1—O22.7 (2)
O2—C1—C2—C3i105.3 (4)C1—O1—Sm1—O2iii99.1 (2)
Sm1—C1—C2—C3i172 (2)C1—O1—Sm1—O1iii122.17 (19)
O1—C1—C2—C3104.2 (4)C1—O1—Sm1—O1iv31.0 (3)
O2—C1—C2—C374.4 (5)C1—O1—Sm1—C1iv2.6 (3)
Sm1—C1—C2—C38 (3)C1—O1—Sm1—C1iii109.2 (3)
C3i—C2—C3—C2ii2.2 (7)O1—C1—Sm1—O3iii88.8 (3)
C1—C2—C3—C2ii178.0 (3)O2—C1—Sm1—O3iii86.3 (3)
C3i—C2—C3—I1177.81 (18)C2—C1—Sm1—O3iii156 (2)
C1—C2—C3—I12.0 (5)O1—C1—Sm1—O35.5 (3)
O3—C4—N1—C5179.1 (7)O2—C1—Sm1—O3169.7 (2)
O3—C4—N1—C61.6 (9)C2—C1—Sm1—O3120 (2)
O2—C1—O1—Sm15.1 (4)O1—C1—Sm1—O3iv77.1 (2)
C2—C1—O1—Sm1173.4 (3)O2—C1—Sm1—O3iv98.1 (2)
N1—C4—O3—Sm1170.0 (4)C2—C1—Sm1—O3iv168 (2)
C4—O3—Sm1—O3iii33.2 (4)O1—C1—Sm1—O2iv156.1 (2)
C4—O3—Sm1—O3iv111.6 (4)O2—C1—Sm1—O2iv28.8 (2)
C4—O3—Sm1—O2iv23.6 (5)C2—C1—Sm1—O2iv41 (2)
C4—O3—Sm1—O2179.4 (4)O1—C1—Sm1—O2175.1 (4)
C4—O3—Sm1—O2iii99.8 (4)C2—C1—Sm1—O270 (2)
C4—O3—Sm1—O1172.4 (4)O1—C1—Sm1—O2iii73.7 (2)
C4—O3—Sm1—O1iii47.7 (4)O2—C1—Sm1—O2iii111.1 (3)
C4—O3—Sm1—O1iv67.3 (4)C2—C1—Sm1—O2iii41 (2)
C4—O3—Sm1—C1174.9 (4)O2—C1—Sm1—O1175.1 (4)
C4—O3—Sm1—C1iv21.3 (5)C2—C1—Sm1—O1115 (2)
C4—O3—Sm1—C1iii74.0 (4)O1—C1—Sm1—O1iii73.78 (19)
C1—O2—Sm1—O3iii132.2 (2)O2—C1—Sm1—O1iii111.1 (2)
C1—O2—Sm1—O312.9 (3)C2—C1—Sm1—O1iii41 (2)
C1—O2—Sm1—O3iv77.5 (2)O1—C1—Sm1—O1iv152.9 (2)
C1—O2—Sm1—O2iv153.2 (2)O2—C1—Sm1—O1iv22.3 (2)
C1—O2—Sm1—O2iii65.6 (3)C2—C1—Sm1—O1iv92 (2)
C1—O2—Sm1—O12.7 (2)O1—C1—Sm1—C1iv177.9 (2)
C1—O2—Sm1—O1iii91.8 (3)O2—C1—Sm1—C1iv2.8 (3)
C1—O2—Sm1—O1iv156.6 (2)C2—C1—Sm1—C1iv67 (2)
C1—O2—Sm1—C1iv177.2 (3)O1—C1—Sm1—C1iii75.0 (3)
C1—O2—Sm1—C1iii77.76 (18)O2—C1—Sm1—C1iii109.90 (18)
C1—O1—Sm1—O3iii130.8 (2)C2—C1—Sm1—C1iii40 (2)
C1—O1—Sm1—O3174.6 (3)
Symmetry codes: (i) y+1/2, z, x1/2; (ii) z+1/2, x+1/2, y; (iii) z+3/2, x+1, y+1/2; (iv) y+1, z1/2, x+3/2.
Acknowledgements top

The authors acknowledge financial support from the National Natural Science Foundation of China (grant Nos. 21276142 and 21076115).

references
References top

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Bruker (2005). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Daiguebonne, C., Gerault, Y., Le Dret, F., Guillou, O. & Boubekeur, K. (2002). J. Alloys Compd, 344, 179–185.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Han, Y.-F., Fu, L.-S., Mafra, L. & Shi, F.-N. (2012). J. Solid State Chem. 186, 165–170.

Lu, J.-H., Xu, H.-W., Liu, Y., Zhao, Y.-S., Daemen, L. L., Brown, C., Timofeeva, T. V., Ma, S.-Q. & Zhou, H.-C. (2008). J. Am. Chem. Soc. 130, 9626–9627.

Nakanishi, K. & Tanaka, N. (2007). Acc. Chem. Res. 40, 863–873.

Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., O'Keeffe, M. & Yaghi, O. M. (2010). Acc. Chem. Res. 43, 58–67.

Serre, C., Millange, F., Thouvenot, C., Gardant, N., Pelle, F. & Ferey, G. (2004). J. Mater. Chem. 14, 1540–1543.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Suib, S. L. (2008). Acc. Chem. Res. 41, 479–487.