organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 6-(6-meth­­oxy­naphthalen-2-yl)-4-(naphthalen-2-yl)-2-oxo­cyclo­hex-3-ene-1-carboxyl­ate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cSeQuent Scientific Limited, Biakampady, Mangalore 575 011, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 18 January 2013; accepted 28 January 2013; online 6 February 2013)

The title compound, C30H26O4, contains an oxo-cyclo­hexane ring in a distorted half-chair configuration, with disorder of two C atoms in a 0.859 (4):0.141 (4) ratio. The dihedral angle between the mean planes of the two napthalene ring systems is 58.6 (8)°.

Related literature

For the biological activity of chalcones, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1150.]); Mayekar et al. (2010[Mayekar, A. N., Li, H., Yathirajan, H. S., Narayana, B. & Suchetha Kumari, N. (2010). Int. J. Chem. (Can.), 2, 114-123.]). For their synthesis, see: Dhar (1981[Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds, pp. 64-70. New York: Wiley-Interscience.]). For related structures, see: Harrison et al. (2010[Harrison, W. T. A., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). Acta Cryst. E66, o2478.]); Li et al. (2009[Li, H., Mayekar, A. N., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009). Acta Cryst. E65, o1186.]); Kaur et al. (2012)[Kaur, M., Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Mayekar, A. N. & Narayana, B. (2012). Crystals, 2, 1239-1247.]. For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C30H26O4

  • Mr = 450.51

  • Monoclinic, P 21 /c

  • a = 18.4688 (10) Å

  • b = 11.2940 (6) Å

  • c = 10.9676 (5) Å

  • β = 96.082 (5)°

  • V = 2274.8 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.69 mm−1

  • T = 173 K

  • 0.24 × 0.18 × 0.06 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.]) Tmin = 0.864, Tmax = 1.000

  • 14336 measured reflections

  • 4461 independent reflections

  • 3497 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.166

  • S = 1.09

  • 4461 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones and their corresponding heterocyclic analogs are valuable intermediates in organic synthesis (Dhar, 1981). This scaffold is found in various medicinally useful compounds and is known to exhibit a multitude of biological activities (Dimmock et al., 1999). The crystal structures of (±)-ethyl 6-(6-methoxy-2-naphthyl)-4- (4-methylphenyl)-2-oxocyclohex-3-ene-1-carboxylate (Li et al., 2009) and ethyl 4-(2,4-dichlorophenyl)-6-(6-methoxy-2- naphthyl)-2-oxocyclohex-3-ene-1-carboxylate (Harrison et al., 2010) have been reported. Recently, we have reported the crystal and molecular structure studies of ethyl 4-(4-hydroxyphenyl)-6-(6-methoxy- 2-naphthyl)-2-oxocyclohex-3-ene-1-carboxylate and ethyl 4-(3- bromophenyl)-6-(6-methoxy-2-naphthyl)-2-oxocyclohex-3-ene-1-carboxylate (Manpreet Kaur et al., 2012). As a part of our ongoing structural studies of substituted cyclohexene carboxylates, this paper reports the crystal structure of the title compound, (I), C30H26O4.

In the title compound the asymmetric unit consists of an ortho bonded ethyl carboxylate group and meta bonded naphthyl and methoxy-naphthyl groups to a disordered oxo-cyclohexane ring with C11 and C12 in a 0.859 (4):0.141 (4) ratio. The dihedral angle between the mean planes of the two napthalene ring systems is 58.6 (8)°. The napthalene and methoxynapthalene rings are twisted by 79.5 (7)° and 72.5 (9)° from the mean plane of the carboxylate group. Bond lengths are in normal ranges (Allen et al., 1987).

Related literature top

For the biological activity of chalcones, see: Dimmock et al. (1999); Mayekar et al. (2010). For their synthesis, see: Dhar (1981). For related structures, see: Harrison et al. (2010); Li et al. (2009); Kaur et al. (2012). For standard bond lengths, see Allen et al. (1987).

Experimental top

The title compound was synthesized as reported earlier (Mayekar et al., 2010).

Preparation of (2E)-3-(6-methoxy-2-naphthyl)-1-(1-naphthyl)prop-2-en -1-one. To a thoroughly stirred solution of 6-methoxy-2-naphthaldehyde (1.86 g, 10 mmol) and 1-naphthalen-2-yl-ethanone (1.70 g, 10 mmol) in 15 ml methanol, 5 ml of 40% KOH solution was added. The reaction mixture was stirred overnight and the solid separated was collected by filteration. The product obtained was recrystallized from methanol.

Preparation of ethyl 4-(1-naphthyl)-6-(6-methoxy-2-naphthyl)-2- oxocyclohex-3-ene-1-carboxylate 3-(6-Methoxy-naphthalen-2-yl)-1- naphthalen-2-yl-propenone. (1.69 g, 5 mmol) and ethyl acetoacetate (5 mmol) were refluxed for 4-6 hrs in 15 ml ethanol in presence of 0.8 ml of 10% NaOH. The reaction mixture was cooled to room temperature and the reaction mass was filtered. The compound (I) was recrystallized from methanol (Fig 2).

The compound was further recrystallized from a 1:1 mixture of toluene & dimethylformamide by slow evaporation (m.p.: 440-443 K).

Refinement top

All the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH), 0.97Å (CH2) or 0.96Å (CH3). Isotropic displacement parameters for these atoms were set to 1.18-1.21 (CH, CH2) or 1.49 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Synthesis of the title compound, (I).
Ethyl 6-(6-methoxynaphthalen-2-yl)-4-(naphthalen-2-yl)-2-oxocyclohex-3-ene-1-carboxylate top
Crystal data top
C30H26O4F(000) = 952
Mr = 450.51Dx = 1.315 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 4292 reflections
a = 18.4688 (10) Åθ = 3.9–72.7°
b = 11.2940 (6) ŵ = 0.69 mm1
c = 10.9676 (5) ÅT = 173 K
β = 96.082 (5)°Chunk, colorless
V = 2274.8 (2) Å30.24 × 0.18 × 0.06 mm
Z = 4
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
4461 independent reflections
Radiation source: Enhance (Cu) X-ray Source3497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.0416 pixels mm-1θmax = 72.9°, θmin = 4.6°
ω scansh = 2222
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 1113
Tmin = 0.864, Tmax = 1.000l = 1313
14336 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0709P)2 + 1.1847P]
where P = (Fo2 + 2Fc2)/3
4461 reflections(Δ/σ)max < 0.001
317 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C30H26O4V = 2274.8 (2) Å3
Mr = 450.51Z = 4
Monoclinic, P21/cCu Kα radiation
a = 18.4688 (10) ŵ = 0.69 mm1
b = 11.2940 (6) ÅT = 173 K
c = 10.9676 (5) Å0.24 × 0.18 × 0.06 mm
β = 96.082 (5)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
4461 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
3497 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 1.000Rint = 0.037
14336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.09Δρmax = 0.30 e Å3
4461 reflectionsΔρmin = 0.22 e Å3
317 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.38758 (10)0.25380 (17)1.19112 (16)0.0537 (5)
O20.22028 (11)0.26879 (18)1.06300 (17)0.0604 (5)
O30.24685 (10)0.40261 (17)1.21035 (17)0.0536 (5)
O40.01861 (10)0.74357 (18)0.5654 (2)0.0636 (5)
C10.25133 (11)0.4898 (2)0.8777 (2)0.0399 (5)
C20.22175 (12)0.5763 (2)0.9533 (2)0.0436 (5)
H20.24290.58731.03320.052*
C30.16246 (12)0.6437 (2)0.9100 (2)0.0434 (5)
H30.14380.69900.96120.052*
C40.12995 (11)0.6298 (2)0.7896 (2)0.0388 (5)
C50.06928 (12)0.7000 (2)0.7404 (2)0.0450 (6)
H50.05020.75750.78880.054*
C60.03949 (12)0.6828 (2)0.6232 (2)0.0474 (6)
C70.06710 (13)0.5948 (2)0.5493 (2)0.0498 (6)
H70.04580.58370.46940.060*
C80.12468 (13)0.5258 (2)0.5935 (2)0.0462 (6)
H80.14170.46730.54410.055*
C90.15855 (12)0.5428 (2)0.7140 (2)0.0393 (5)
C100.21957 (12)0.4748 (2)0.7618 (2)0.0406 (5)
H100.23830.41830.71200.049*
C110.31578 (12)0.4105 (2)0.9216 (2)0.0292 (6)0.854 (6)
H110.30620.33150.88670.035*0.854 (6)
C11A0.3278 (8)0.4586 (15)0.9685 (16)0.0292 (6)0.146 (6)
H11A0.33820.51451.03640.035*0.146 (6)
C120.32545 (13)0.3985 (2)1.0610 (2)0.0319 (6)0.859 (4)
H120.33530.47671.09760.038*0.859 (4)
C12A0.3134 (8)0.3335 (14)1.0095 (14)0.0319 (6)0.141 (4)
H12A0.30220.27380.94540.038*0.141 (4)
C130.38903 (12)0.3163 (2)1.1010 (2)0.0405 (5)
C140.45116 (11)0.31945 (19)1.03020 (19)0.0338 (5)
H140.49260.27711.05920.041*
C150.45197 (10)0.38021 (17)0.92505 (18)0.0297 (4)
C160.38731 (10)0.45588 (18)0.87838 (18)0.0307 (4)
H16A0.38270.45680.78950.037*
H16B0.39580.53650.90680.037*
C170.51453 (11)0.37341 (17)0.85114 (18)0.0307 (4)
C180.52236 (11)0.45096 (18)0.75709 (19)0.0321 (4)
H180.48810.51080.74090.039*
C190.58099 (11)0.44294 (19)0.68371 (19)0.0341 (5)
C200.58938 (13)0.5230 (2)0.5872 (2)0.0429 (5)
H200.55570.58360.57040.052*
C210.64671 (14)0.5122 (2)0.5182 (2)0.0492 (6)
H210.65160.56520.45470.059*
C220.69812 (13)0.4214 (2)0.5431 (2)0.0489 (6)
H220.73680.41470.49580.059*
C230.69187 (12)0.3432 (2)0.6354 (2)0.0435 (5)
H230.72650.28380.65100.052*
C240.63308 (11)0.35112 (19)0.7081 (2)0.0355 (5)
C250.62426 (12)0.2717 (2)0.8043 (2)0.0402 (5)
H250.65780.21090.82090.048*
C260.56774 (11)0.28198 (19)0.8737 (2)0.0368 (5)
H260.56360.22840.93700.044*
C270.25774 (13)0.3470 (2)1.1088 (2)0.0439 (5)
C280.18501 (16)0.3692 (3)1.2711 (3)0.0612 (7)
H28A0.19850.36631.35890.073*
H28B0.16860.29101.24410.073*
C290.12518 (16)0.4561 (3)1.2428 (3)0.0714 (9)
H29A0.14300.53451.26220.107*
H29B0.08600.43821.29070.107*
H29C0.10790.45181.15720.107*
C300.04727 (15)0.8396 (3)0.6307 (3)0.0724 (9)
H30A0.01160.90150.64230.109*
H30B0.05900.81210.70910.109*
H30C0.09040.86960.58450.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0508 (10)0.0660 (12)0.0460 (10)0.0170 (9)0.0129 (8)0.0244 (8)
O20.0681 (13)0.0659 (12)0.0492 (11)0.0046 (10)0.0151 (9)0.0009 (9)
O30.0495 (10)0.0557 (10)0.0579 (11)0.0018 (8)0.0164 (8)0.0014 (9)
O40.0415 (10)0.0702 (13)0.0753 (13)0.0104 (9)0.0112 (9)0.0109 (10)
C10.0290 (10)0.0431 (12)0.0496 (13)0.0025 (9)0.0130 (9)0.0137 (10)
C20.0349 (11)0.0487 (13)0.0469 (13)0.0001 (10)0.0035 (10)0.0096 (11)
C30.0353 (11)0.0427 (12)0.0529 (14)0.0026 (10)0.0074 (10)0.0022 (11)
C40.0287 (10)0.0374 (11)0.0509 (13)0.0027 (9)0.0072 (9)0.0051 (10)
C50.0317 (11)0.0421 (12)0.0609 (15)0.0025 (9)0.0037 (10)0.0039 (11)
C60.0294 (11)0.0495 (14)0.0622 (16)0.0011 (10)0.0006 (10)0.0119 (12)
C70.0384 (12)0.0576 (15)0.0527 (14)0.0078 (11)0.0013 (10)0.0062 (12)
C80.0400 (12)0.0494 (14)0.0497 (14)0.0042 (10)0.0077 (10)0.0027 (11)
C90.0316 (11)0.0385 (12)0.0493 (13)0.0029 (9)0.0107 (9)0.0064 (10)
C100.0340 (11)0.0431 (12)0.0465 (13)0.0037 (9)0.0125 (9)0.0092 (10)
C110.0285 (11)0.0313 (14)0.0274 (13)0.0010 (10)0.0024 (9)0.0005 (11)
C11A0.0285 (11)0.0313 (14)0.0274 (13)0.0010 (10)0.0024 (9)0.0005 (11)
C120.0305 (12)0.0331 (13)0.0322 (13)0.0013 (10)0.0046 (9)0.0010 (10)
C12A0.0305 (12)0.0331 (13)0.0322 (13)0.0013 (10)0.0046 (9)0.0010 (10)
C130.0385 (12)0.0473 (13)0.0359 (11)0.0068 (10)0.0043 (9)0.0053 (10)
C140.0297 (10)0.0368 (11)0.0345 (11)0.0057 (8)0.0011 (8)0.0018 (9)
C150.0281 (10)0.0287 (10)0.0321 (10)0.0016 (8)0.0019 (8)0.0046 (8)
C160.0294 (10)0.0311 (10)0.0322 (10)0.0015 (8)0.0054 (8)0.0013 (8)
C170.0274 (9)0.0311 (10)0.0333 (10)0.0017 (8)0.0014 (8)0.0047 (8)
C180.0269 (10)0.0333 (10)0.0358 (11)0.0003 (8)0.0015 (8)0.0037 (8)
C190.0300 (10)0.0360 (11)0.0359 (11)0.0047 (8)0.0012 (8)0.0048 (9)
C200.0409 (12)0.0456 (13)0.0425 (12)0.0024 (10)0.0053 (10)0.0020 (10)
C210.0467 (14)0.0593 (15)0.0430 (13)0.0111 (12)0.0115 (10)0.0027 (11)
C220.0393 (13)0.0626 (16)0.0473 (14)0.0107 (11)0.0166 (10)0.0136 (12)
C230.0347 (11)0.0484 (13)0.0483 (13)0.0008 (10)0.0080 (10)0.0130 (11)
C240.0301 (10)0.0381 (11)0.0383 (11)0.0014 (8)0.0039 (8)0.0093 (9)
C250.0345 (11)0.0375 (11)0.0487 (13)0.0077 (9)0.0043 (9)0.0028 (10)
C260.0344 (11)0.0360 (11)0.0404 (12)0.0034 (9)0.0061 (9)0.0024 (9)
C270.0367 (12)0.0492 (14)0.0461 (13)0.0045 (10)0.0066 (10)0.0138 (11)
C280.0632 (17)0.0641 (17)0.0617 (17)0.0050 (14)0.0318 (14)0.0025 (14)
C290.0508 (16)0.086 (2)0.080 (2)0.0083 (16)0.0212 (15)0.0115 (18)
C300.0447 (15)0.0635 (18)0.105 (3)0.0166 (14)0.0095 (16)0.0083 (18)
Geometric parameters (Å, º) top
O1—C131.217 (3)C12A—H12A0.9800
O2—C271.199 (3)C13—C141.452 (3)
O3—C271.312 (3)C14—C151.343 (3)
O3—C281.432 (3)C14—H140.9300
O4—C61.372 (3)C15—C171.482 (3)
O4—C301.432 (4)C15—C161.513 (3)
C1—C101.354 (3)C16—H16A0.9700
C1—C21.427 (3)C16—H16B0.9700
C1—C111.526 (3)C17—C181.372 (3)
C1—C11A1.676 (15)C17—C261.429 (3)
C2—C31.376 (3)C18—C191.419 (3)
C2—H20.9300C18—H180.9300
C3—C41.400 (3)C19—C201.413 (3)
C3—H30.9300C19—C241.421 (3)
C4—C91.424 (3)C20—C211.371 (3)
C4—C51.431 (3)C20—H200.9300
C5—C61.358 (4)C21—C221.405 (4)
C5—H50.9300C21—H210.9300
C6—C71.412 (4)C22—C231.358 (4)
C7—C81.365 (4)C22—H220.9300
C7—H70.9300C23—C241.417 (3)
C8—C91.414 (3)C23—H230.9300
C8—H80.9300C24—C251.407 (3)
C9—C101.417 (3)C25—C261.360 (3)
C10—H100.9300C25—H250.9300
C11—C121.526 (3)C26—H260.9300
C11—C161.538 (3)C28—C291.486 (4)
C11—H110.9800C28—H28A0.9700
C11A—C12A1.51 (2)C28—H28B0.9700
C11A—C161.555 (14)C29—H29A0.9600
C11A—H11A0.9800C29—H29B0.9600
C12—C271.522 (3)C29—H29C0.9600
C12—C131.525 (3)C30—H30A0.9600
C12—H120.9800C30—H30B0.9600
C12A—C271.582 (15)C30—H30C0.9600
C12A—C131.643 (15)
C27—O3—C28118.0 (2)C14—C15—C17121.55 (18)
C6—O4—C30117.4 (2)C14—C15—C16119.93 (18)
C10—C1—C2118.5 (2)C17—C15—C16118.51 (17)
C10—C1—C11118.0 (2)C15—C16—C11112.38 (17)
C2—C1—C11123.5 (2)C15—C16—C11A112.5 (5)
C10—C1—C11A141.8 (6)C15—C16—H16A109.1
C2—C1—C11A98.6 (7)C11—C16—H16A109.1
C3—C2—C1121.2 (2)C11A—C16—H16A130.3
C3—C2—H2119.4C15—C16—H16B109.1
C1—C2—H2119.4C11—C16—H16B109.1
C2—C3—C4120.6 (2)C11A—C16—H16B83.0
C2—C3—H3119.7H16A—C16—H16B107.9
C4—C3—H3119.7C18—C17—C26117.78 (19)
C3—C4—C9118.6 (2)C18—C17—C15121.89 (18)
C3—C4—C5122.3 (2)C26—C17—C15120.30 (18)
C9—C4—C5119.2 (2)C17—C18—C19122.21 (19)
C6—C5—C4120.0 (2)C17—C18—H18118.9
C6—C5—H5120.0C19—C18—H18118.9
C4—C5—H5120.0C20—C19—C18122.3 (2)
C5—C6—O4125.8 (2)C20—C19—C24118.9 (2)
C5—C6—C7120.7 (2)C18—C19—C24118.82 (19)
O4—C6—C7113.5 (2)C21—C20—C19120.6 (2)
C8—C7—C6120.8 (2)C21—C20—H20119.7
C8—C7—H7119.6C19—C20—H20119.7
C6—C7—H7119.6C20—C21—C22120.3 (2)
C7—C8—C9120.4 (2)C20—C21—H21119.9
C7—C8—H8119.8C22—C21—H21119.9
C9—C8—H8119.8C23—C22—C21120.7 (2)
C8—C9—C10121.9 (2)C23—C22—H22119.7
C8—C9—C4118.9 (2)C21—C22—H22119.7
C10—C9—C4119.2 (2)C22—C23—C24120.6 (2)
C1—C10—C9121.9 (2)C22—C23—H23119.7
C1—C10—H10119.0C24—C23—H23119.7
C9—C10—H10119.0C25—C24—C23122.6 (2)
C1—C11—C12111.9 (2)C25—C24—C19118.46 (19)
C1—C11—C16112.00 (18)C23—C24—C19119.0 (2)
C12—C11—C16109.0 (2)C26—C25—C24121.5 (2)
C1—C11—H11107.9C26—C25—H25119.3
C12—C11—H11107.9C24—C25—H25119.3
C16—C11—H11107.9C25—C26—C17121.3 (2)
C12A—C11A—C16109.2 (12)C25—C26—H26119.4
C12A—C11A—C1102.1 (11)C17—C26—H26119.4
C16—C11A—C1103.6 (9)O2—C27—O3125.1 (2)
C12A—C11A—H11A113.6O2—C27—C12126.6 (2)
C16—C11A—H11A113.6O3—C27—C12108.4 (2)
C1—C11A—H11A113.6O2—C27—C12A91.6 (6)
C27—C12—C13107.72 (19)O3—C27—C12A143.1 (6)
C27—C12—C11111.5 (2)O3—C28—C29109.9 (2)
C13—C12—C11110.33 (19)O3—C28—H28A109.7
C27—C12—H12109.1C29—C28—H28A109.7
C13—C12—H12109.1O3—C28—H28B109.7
C11—C12—H12109.1C29—C28—H28B109.7
C11A—C12A—C27105.1 (11)H28A—C28—H28B108.2
C11A—C12A—C1397.3 (10)C28—C29—H29A109.5
C27—C12A—C1399.4 (8)C28—C29—H29B109.5
C11A—C12A—H12A117.3H29A—C29—H29B109.5
C27—C12A—H12A117.3C28—C29—H29C109.5
C13—C12A—H12A117.3H29A—C29—H29C109.5
O1—C13—C14122.4 (2)H29B—C29—H29C109.5
O1—C13—C12120.3 (2)O4—C30—H30A109.5
C14—C13—C12117.33 (19)O4—C30—H30B109.5
O1—C13—C12A118.3 (5)H30A—C30—H30B109.5
C14—C13—C12A109.8 (5)O4—C30—H30C109.5
C15—C14—C13123.56 (19)H30A—C30—H30C109.5
C15—C14—H14118.2H30B—C30—H30C109.5
C13—C14—H14118.2
C10—C1—C2—C30.2 (3)O1—C13—C14—C15174.5 (2)
C11—C1—C2—C3178.5 (2)C12—C13—C14—C157.7 (3)
C11A—C1—C2—C3170.0 (5)C12A—C13—C14—C1528.9 (7)
C1—C2—C3—C40.7 (4)C13—C14—C15—C17175.25 (19)
C2—C3—C4—C91.4 (3)C13—C14—C15—C163.5 (3)
C2—C3—C4—C5178.6 (2)C14—C15—C16—C1127.2 (3)
C3—C4—C5—C6179.7 (2)C17—C15—C16—C11151.59 (19)
C9—C4—C5—C60.3 (3)C14—C15—C16—C11A3.8 (8)
C4—C5—C6—O4179.8 (2)C17—C15—C16—C11A177.4 (8)
C4—C5—C6—C70.9 (4)C1—C11—C16—C15178.07 (19)
C30—O4—C6—C54.9 (4)C12—C11—C16—C1553.7 (3)
C30—O4—C6—C7176.1 (2)C1—C11—C16—C11A81.8 (11)
C5—C6—C7—C80.6 (4)C12—C11—C16—C11A42.5 (11)
O4—C6—C7—C8179.6 (2)C12A—C11A—C16—C1546.9 (13)
C6—C7—C8—C91.1 (4)C1—C11A—C16—C15155.1 (6)
C7—C8—C9—C10178.4 (2)C12A—C11A—C16—C1148.9 (11)
C7—C8—C9—C42.3 (3)C1—C11A—C16—C1159.3 (10)
C3—C4—C9—C8178.2 (2)C14—C15—C17—C18167.49 (19)
C5—C4—C9—C81.9 (3)C16—C15—C17—C1813.7 (3)
C3—C4—C9—C101.2 (3)C14—C15—C17—C2614.7 (3)
C5—C4—C9—C10178.7 (2)C16—C15—C17—C26164.12 (18)
C2—C1—C10—C90.3 (3)C26—C17—C18—C190.3 (3)
C11—C1—C10—C9178.7 (2)C15—C17—C18—C19178.19 (18)
C11A—C1—C10—C9164.0 (9)C17—C18—C19—C20179.7 (2)
C8—C9—C10—C1179.0 (2)C17—C18—C19—C240.3 (3)
C4—C9—C10—C10.4 (3)C18—C19—C20—C21179.9 (2)
C10—C1—C11—C12155.9 (2)C24—C19—C20—C210.1 (3)
C2—C1—C11—C1222.4 (3)C19—C20—C21—C220.3 (4)
C11A—C1—C11—C1247.9 (11)C20—C21—C22—C230.0 (4)
C10—C1—C11—C1681.3 (3)C21—C22—C23—C240.4 (4)
C2—C1—C11—C16100.3 (3)C22—C23—C24—C25179.7 (2)
C11A—C1—C11—C1674.8 (11)C22—C23—C24—C190.6 (3)
C10—C1—C11A—C12A83.0 (12)C20—C19—C24—C25180.0 (2)
C2—C1—C11A—C12A110.9 (10)C18—C19—C24—C250.0 (3)
C11—C1—C11A—C12A47.8 (10)C20—C19—C24—C230.3 (3)
C10—C1—C11A—C1630.4 (15)C18—C19—C24—C23179.72 (19)
C2—C1—C11A—C16135.7 (8)C23—C24—C25—C26179.3 (2)
C11—C1—C11A—C1665.6 (11)C19—C24—C25—C260.4 (3)
C1—C11—C12—C2758.9 (3)C24—C25—C26—C170.5 (3)
C16—C11—C12—C27176.69 (19)C18—C17—C26—C250.1 (3)
C1—C11—C12—C13178.5 (2)C15—C17—C26—C25177.8 (2)
C16—C11—C12—C1357.1 (3)C28—O3—C27—O21.0 (4)
C16—C11A—C12A—C27175.2 (9)C28—O3—C27—C12179.3 (2)
C1—C11A—C12A—C2775.6 (11)C28—O3—C27—C12A173.7 (9)
C16—C11A—C12A—C1373.3 (12)C13—C12—C27—O281.2 (3)
C1—C11A—C12A—C13177.5 (8)C11—C12—C27—O240.0 (3)
C27—C12—C13—O125.2 (3)C13—C12—C27—O398.5 (2)
C11—C12—C13—O1147.1 (2)C11—C12—C27—O3140.3 (2)
C27—C12—C13—C14156.9 (2)C13—C12—C27—C12A74.2 (9)
C11—C12—C13—C1435.1 (3)C11—C12—C27—C12A46.9 (9)
C27—C12—C13—C12A71.6 (9)C11A—C12A—C27—O2133.7 (10)
C11—C12—C13—C12A50.3 (9)C13—C12A—C27—O2126.0 (7)
C11A—C12A—C13—O1148.1 (8)C11A—C12A—C27—O352.2 (15)
C27—C12A—C13—O141.3 (10)C13—C12A—C27—O348.1 (13)
C11A—C12A—C13—C1464.7 (10)C11A—C12A—C27—C1240.7 (9)
C27—C12A—C13—C14171.5 (5)C13—C12A—C27—C1259.6 (7)
C11A—C12A—C13—C1245.0 (9)C27—O3—C28—C29100.8 (3)
C27—C12A—C13—C1261.8 (8)

Experimental details

Crystal data
Chemical formulaC30H26O4
Mr450.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)18.4688 (10), 11.2940 (6), 10.9676 (5)
β (°) 96.082 (5)
V3)2274.8 (2)
Z4
Radiation typeCu Kα
µ (mm1)0.69
Crystal size (mm)0.24 × 0.18 × 0.06
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
Tmin, Tmax0.864, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14336, 4461, 3497
Rint0.037
(sin θ/λ)max1)0.620
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.166, 1.09
No. of reflections4461
No. of parameters317
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.22

Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

MK thanks University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationDhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds, pp. 64–70. New York: Wiley-Interscience.
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1150.  Web of Science PubMed CAS
First citationHarrison, W. T. A., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). Acta Cryst. E66, o2478.  Web of Science CSD CrossRef IUCr Journals
First citationKaur, M., Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Mayekar, A. N. & Narayana, B. (2012). Crystals, 2, 1239–1247.  CSD CrossRef CAS
First citationLi, H., Mayekar, A. N., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009). Acta Cryst. E65, o1186.  Web of Science CSD CrossRef IUCr Journals
First citationMayekar, A. N., Li, H., Yathirajan, H. S., Narayana, B. & Suchetha Kumari, N. (2010). Int. J. Chem. (Can.), 2, 114–123.  CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds