organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o454-o455

Ethyl 2,6-bis­­(4-chloro­phen­yl)-4-(4-methyl­anilino)-1-(4-methyl­phen­yl)-1,2,5,6-tetra­hydro­pyridine-3-carboxyl­ate

aPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bLaboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati University, Santiniketan 731 235, West Bengal, India
*Correspondence e-mail: vivek_gupta2k2@hotmail.com

(Received 6 February 2013; accepted 22 February 2013; online 28 February 2013)

In the title mol­ecule, C34H32Cl2N2O2, the tetra­hydro­pyridine ring adopts a distorted boat conformation and both 4-chloro­phenyl substituents are in axial positions. An intra­molecular N—H⋯O hydrogen bond is formed by the amino group and carbonyl O atom. In the crystal, weak C—H⋯Cl inter­actions link the mol­ecules into chains along [010].

Related literature

For general background to functionalized piperidines, see: Pinder (1992[Pinder, A. R. (1992). Nat. Prod. Rep. 9, 491-504.]); Watson et al. (2000[Watson, P. S., Jiang, B. & Scott, B. (2000). Org. Lett. 2, 3679-3681.]); Breman et al. (2001[Breman, J., Egan, A. & Keusch, G. (2001). Am. J. Trop. Med. Hyg. 64, iv-vii.]); Kamei et al. (2005[Kamei, K., Maeda, N., Katswagi-Ogino, R., Koyamaa, M., Nakajima, M., Tatsuoka, T., Ohno, T. & Inoue, T. (2005). Bioorg. Med. Chem. Lett. 15, 2990-2993.]). For related structures, see: Sambyal et al. (2011[Sambyal, A., Bamezai, R. K., Razdan, T. K. & Gupta, V. K. (2011). J. Chem. Crystallogr. 41, 868-873.]); Brahmachari & Das (2012[Brahmachari, G. & Das, S. (2012). Tetrahedron Lett. 53, 1479-1484.]); Khan et al. (2010[Khan, T. K., Khan, Md. M. & Bannuru, K. K. R. (2010). Tetrahedron, 66, 7762-7772.]); Anthal et al. (2013[Anthal, S., Brahmachari, G., Das, S., Kant, R. & Gupta, V. K. (2013). Acta Cryst. E69, o299-o300.]). For ring conformations, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.]).

[Scheme 1]

Experimental

Crystal data
  • C34H32Cl2N2O2

  • Mr = 571.52

  • Triclinic, [P \overline 1]

  • a = 10.0851 (6) Å

  • b = 12.4340 (8) Å

  • c = 14.2414 (10) Å

  • α = 113.405 (6)°

  • β = 102.233 (5)°

  • γ = 101.194 (5)°

  • V = 1522.63 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.853, Tmax = 1.000

  • 13336 measured reflections

  • 5342 independent reflections

  • 2181 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.109

  • S = 0.89

  • 5342 reflections

  • 365 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 2.10 2.707 (4) 127
C9—H9A⋯Cl2i 0.96 2.74 3.698 (4) 173
Symmetry code: (i) x, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Functionalized piperidine scaffolds are the attractive structural motifs as they are found to constitute a pharmaceutically significant skeleton in numerous natural products (Pinder, 1992), synthetic pharmaceuticals (Breman et al., 2001; Watson et al., 2000), and a wide variety of biologically active compounds. A large number of compounds bearing piperidine scaffold have entered into preclinical and clinical trials over the last few years (Kamei et al., 2005). Continuing our interest in densely functionalized piperidines (Sambyal et al., 2011; Brahmachari & Das, 2012) we present here the crystal structure of the title compound (Fig. 1). Molecular structure of the title compound is similar to that of closely related structures (Khan et al., 2010; Anthal et al., 2013). The tetrahydropyridine ring adopts distorted boat conformation with asymmetry parameters [ΔCs(C2)=11.1] and [ΔCs(C3—C4)=16.9] (Duax et al., 1975). The dihedral angles between two 4-chlorophenyl rings[(C10-C15) and (C22-C27)] and two 4-tolyl rings[(C16-C21) and (C28-C33)]are 47.7 (1)° and 48.5 (1)° respectively. The dihedral angle between 4-chlorophenyl ring (C10-C15) and 4-tolyl ring (C28-C33) is 80.4 (1)°, between 4-tolyl ring (C16-C21) and 4-chlorophenyl ring (C22-C27) is 88.7 (1)°, between 4-chlorophenyl ring (C22-C27) and 4-tolyl ring (C28-C33) is 41.4 (1)° and 4-chlorophenyl ring (C10-C15) makes a dihedral angle of 68.7 (1)° with 4-tolyl ring (C16-C21). In the crystal, an intramolecular hydrogen bond N2—H2···O1 is found. The amino N1 atom links through H1 to the oxygen of the carbonyl group. This interaction leads to the formation of a pseudo-six membered ring comprising atoms O1, C7, C3, C4, N2 and H2. Packing view of the molecules in the unit cell viewed down the a axis is shown in Fig.2. Weak intermolecular C—H···Cl interactions (Table 1) link the molecules into chains parallel to [010].

Related literature top

For general background to functionalized piperidines, see: Pinder (1992); Watson et al. (2000); Breman et al. (2001); Kamei et al. (2005). For related structures, see: Sambyal et al. (2011); Brahmachari & Das (2012); Khan et al. (2010); Anthal et al. (2013). For ring conformations, see: Duax & Norton (1975).

Experimental top

An oven-dried screw cap reaction tube was charged with a magnetic stir bar, 4-methylaniline (2 mmol), ethyl acetoacetate (1 mmol) and Bi(NO3)3.5H2O (10 mol%) in 4 ml ethanol; the mixture was stirred at room temperature for 20 min, and after then 4-chlorobenzaldehyde (2 mmol) was added to the reaction mixture and stirring was continued up to 21 h to complete the reaction (monitored by TLC). On completion of the reaction, a thick white precipitate was obtained. The solid residue was filtered off and washed with cold ethanol-water. The solid mass was dissolved in hot ethyl acetate-ethanol mixture and filtered off when bismuth salt separated out; the filtrate on standing afforded white crystals of the title compound, characterized by elemental analyses and spectral studies including FT—IR, 1H-NMR, and 13C-NMR. For X-ray study single crystals were prepared by further recrystallization by slow evaporation from ethanol-ethyl acetate-water solution (colourless crystals; mp 500–502 K; anal. calcd for C34H32Cl2N2O2: C 71.45, H 5.64, N 4.90; found: C 71.42, H 5.66, N 4.91).

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C/N atoms, with C—H distances of 0.93–0.98 Å and N—H distance of 0.86 Å; Uiso(H) = 1.2Ueq(C/N), except for the methyl groups where Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title molecule with the atom-labeling scheme. The displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed down the a axis.
Ethyl 2,6-bis(4-chlorophenyl)-4-(4-methylanilino)-1-(4-methylphenyl)-1,2,5,6-tetrahydropyridine-3-carboxylate top
Crystal data top
C34H32Cl2N2O2Z = 2
Mr = 571.52F(000) = 600
Triclinic, P1Dx = 1.247 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0851 (6) ÅCell parameters from 3234 reflections
b = 12.4340 (8) Åθ = 3.3–28.9°
c = 14.2414 (10) ŵ = 0.25 mm1
α = 113.405 (6)°T = 293 K
β = 102.233 (5)°Block-shaped, white
γ = 101.194 (5)°0.30 × 0.20 × 0.20 mm
V = 1522.63 (17) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
5342 independent reflections
Radiation source: fine-focus sealed tube2181 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 16.1049 pixels mm-1θmax = 25.0°, θmin = 3.3°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1414
Tmin = 0.853, Tmax = 1.000l = 1616
13336 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0203P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max = 0.001
5342 reflectionsΔρmax = 0.25 e Å3
365 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0060 (5)
Crystal data top
C34H32Cl2N2O2γ = 101.194 (5)°
Mr = 571.52V = 1522.63 (17) Å3
Triclinic, P1Z = 2
a = 10.0851 (6) ÅMo Kα radiation
b = 12.4340 (8) ŵ = 0.25 mm1
c = 14.2414 (10) ÅT = 293 K
α = 113.405 (6)°0.30 × 0.20 × 0.20 mm
β = 102.233 (5)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
5342 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2181 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 1.000Rint = 0.059
13336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 0.89Δρmax = 0.25 e Å3
5342 reflectionsΔρmin = 0.21 e Å3
365 parameters
Special details top

Experimental. 1H-NMR (400 MHz, CDCl3): δH 1.46 (t, J = 6.8 Hz, 3H), 2.16 (s, 3H), 2.27 (s, 3H), 2.70 (dd, J = 2.4, 15.2 Hz, 1H), 2.77 (dd, J = 5.2, 15.2 Hz, 1H), 4.29–4.33 (m, 1H), 4.35–4.44 (m, 1H), 5.05 (br s, 1H), 6.29 (t, J = 8, 11.2 Hz, 3H), 6.36 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8 Hz, 2H), 7.05(d, J = 8.4 Hz, 2H), 7.21–7.26 (m, 6H), 10.20 (br s, 1H). 13C-NMR (100 MHz, CDCl3): δC 14.82, 20.13, 20.92, 33.62, 54.84, 57.35, 59.74, 97.24, 113.0, 125.77, 125.83, 127.85, 128.07, 128.35, 128.73, 129.59, 132.01, 132.76, 135.01, 135.88, 141.23, 142.80, 144.37, 156.16, 168.03. IR νmax (KBr): 3242, 3024, 2974, 2915, 2870, 1653, 1589, 1514, 1483, 1256, 1172, 1076, 1012, 804, 678 cm-1.

CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.22422 (13)1.01537 (10)0.47443 (10)0.1168 (5)
Cl20.36062 (12)0.11737 (10)0.09237 (10)0.1157 (5)
O10.0417 (3)0.3327 (2)0.03361 (19)0.0828 (8)
O20.2464 (2)0.4814 (2)0.01502 (18)0.0734 (7)
N10.4134 (2)0.4914 (2)0.29596 (19)0.0496 (7)
N20.0058 (3)0.2735 (2)0.1225 (2)0.0689 (9)
H20.05010.27060.06250.083*
C20.3304 (3)0.5348 (3)0.2295 (2)0.0493 (8)
H2A0.38890.55390.18800.059*
C30.1954 (3)0.4340 (3)0.1478 (3)0.0488 (8)
C40.1191 (3)0.3651 (3)0.1837 (3)0.0532 (9)
C50.1815 (3)0.3929 (3)0.2988 (2)0.0564 (9)
H5A0.13030.32880.31220.068*
H5B0.17280.47080.34630.068*
C60.3382 (3)0.3997 (3)0.3215 (3)0.0510 (9)
H60.37920.42840.39930.061*
C70.1516 (4)0.4089 (3)0.0359 (3)0.0586 (10)
C80.2095 (4)0.4698 (4)0.0935 (3)0.0985 (14)
H8A0.20420.38810.14480.118*
H8B0.11700.48150.11280.118*
C90.3167 (5)0.5614 (3)0.0972 (3)0.1185 (16)
H9A0.32350.64180.04460.178*
H9B0.29120.55670.16790.178*
H9C0.40700.54690.08150.178*
C100.3019 (3)0.6540 (3)0.2953 (3)0.0507 (9)
C110.2103 (3)0.6973 (3)0.2428 (3)0.0648 (10)
H110.16420.65120.16880.078*
C120.1861 (4)0.8064 (4)0.2976 (3)0.0746 (11)
H120.12360.83300.26050.090*
C130.2527 (4)0.8763 (3)0.4059 (3)0.0688 (11)
C140.3449 (4)0.8373 (3)0.4613 (3)0.0729 (11)
H140.39110.88490.53520.087*
C150.3683 (3)0.7264 (3)0.4058 (3)0.0608 (10)
H150.43000.69980.44350.073*
C160.5610 (3)0.5394 (3)0.3382 (2)0.0447 (8)
C170.6367 (3)0.6453 (3)0.3357 (2)0.0524 (9)
H170.58700.68420.30380.063*
C180.7817 (3)0.6921 (3)0.3795 (3)0.0573 (9)
H180.82810.76200.37580.069*
C190.8621 (3)0.6397 (3)0.4289 (3)0.0580 (9)
C200.7892 (3)0.5358 (3)0.4315 (3)0.0606 (10)
H200.84030.49810.46410.073*
C210.6432 (3)0.4858 (3)0.3877 (2)0.0528 (9)
H210.59810.41520.39090.063*
C220.3522 (3)0.2723 (3)0.2641 (3)0.0495 (9)
C230.3729 (3)0.2285 (3)0.1648 (3)0.0624 (10)
H230.38520.28060.13310.075*
C240.3758 (3)0.1092 (3)0.1110 (3)0.0707 (11)
H240.38880.08090.04370.085*
C250.3591 (4)0.0333 (3)0.1587 (4)0.0746 (12)
C260.3418 (3)0.0744 (4)0.2592 (3)0.0734 (12)
H260.33370.02290.29180.088*
C270.3366 (3)0.1935 (3)0.3110 (3)0.0645 (10)
H270.32250.22110.37800.077*
C280.0709 (3)0.1806 (3)0.1490 (3)0.0627 (10)
C290.1797 (4)0.1888 (3)0.1914 (3)0.0768 (12)
H290.21290.25650.20480.092*
C300.2411 (4)0.0965 (4)0.2146 (3)0.0907 (14)
H300.31610.10240.24270.109*
C310.1929 (5)0.0037 (4)0.1966 (4)0.0874 (14)
C320.0836 (4)0.0106 (4)0.1543 (3)0.0900 (14)
H320.05030.07820.14070.108*
C330.0212 (4)0.0819 (4)0.1314 (3)0.0789 (12)
H330.05450.07670.10400.095*
C341.0228 (3)0.6960 (3)0.4809 (3)0.0972 (14)
H34A1.05330.67670.53930.146*
H34B1.04820.78390.50820.146*
H34C1.06860.66300.42820.146*
C350.2600 (4)0.1064 (4)0.2214 (4)0.145 (2)
H35A0.31020.18040.15510.217*
H35B0.32550.08210.25960.217*
H35C0.18650.12120.26530.217*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1645 (12)0.0713 (8)0.1186 (11)0.0572 (8)0.0661 (9)0.0273 (8)
Cl20.1328 (10)0.0596 (8)0.1190 (11)0.0344 (7)0.0103 (8)0.0197 (7)
O10.0872 (19)0.0779 (19)0.0520 (17)0.0019 (15)0.0075 (14)0.0274 (16)
O20.0933 (18)0.0777 (18)0.0403 (15)0.0102 (14)0.0167 (13)0.0285 (14)
N10.0462 (16)0.0515 (18)0.0501 (18)0.0096 (13)0.0088 (13)0.0281 (16)
N20.0542 (18)0.072 (2)0.065 (2)0.0005 (16)0.0024 (15)0.0360 (19)
C20.052 (2)0.052 (2)0.039 (2)0.0114 (17)0.0099 (16)0.0212 (19)
C30.055 (2)0.047 (2)0.039 (2)0.0123 (17)0.0119 (17)0.0171 (18)
C40.046 (2)0.056 (2)0.049 (2)0.0140 (18)0.0053 (18)0.021 (2)
C50.055 (2)0.058 (2)0.050 (2)0.0096 (17)0.0156 (18)0.022 (2)
C60.054 (2)0.053 (2)0.039 (2)0.0085 (17)0.0109 (16)0.0204 (19)
C70.072 (3)0.052 (2)0.046 (2)0.016 (2)0.013 (2)0.020 (2)
C80.129 (4)0.103 (4)0.050 (3)0.007 (3)0.026 (2)0.037 (3)
C90.209 (5)0.080 (3)0.077 (3)0.037 (3)0.069 (3)0.038 (3)
C100.055 (2)0.047 (2)0.047 (2)0.0133 (17)0.0141 (17)0.022 (2)
C110.078 (3)0.052 (2)0.052 (3)0.0124 (19)0.0099 (19)0.021 (2)
C120.093 (3)0.059 (3)0.076 (3)0.029 (2)0.025 (3)0.034 (3)
C130.080 (3)0.049 (3)0.072 (3)0.020 (2)0.030 (2)0.019 (2)
C140.069 (3)0.074 (3)0.053 (3)0.018 (2)0.020 (2)0.009 (2)
C150.057 (2)0.071 (3)0.046 (2)0.0229 (19)0.0156 (18)0.017 (2)
C160.052 (2)0.047 (2)0.034 (2)0.0149 (17)0.0142 (16)0.0169 (18)
C170.057 (2)0.047 (2)0.053 (2)0.0179 (17)0.0193 (18)0.0213 (19)
C180.057 (2)0.052 (2)0.069 (3)0.0158 (18)0.0256 (19)0.030 (2)
C190.046 (2)0.062 (3)0.062 (3)0.0144 (18)0.0170 (18)0.025 (2)
C200.059 (2)0.069 (3)0.056 (2)0.0197 (19)0.0160 (19)0.031 (2)
C210.059 (2)0.050 (2)0.049 (2)0.0118 (17)0.0175 (17)0.0234 (19)
C220.052 (2)0.047 (2)0.047 (2)0.0128 (16)0.0126 (17)0.022 (2)
C230.073 (2)0.059 (3)0.054 (3)0.022 (2)0.0195 (19)0.024 (2)
C240.085 (3)0.067 (3)0.054 (3)0.031 (2)0.022 (2)0.019 (2)
C250.080 (3)0.047 (3)0.076 (3)0.017 (2)0.003 (2)0.021 (3)
C260.077 (3)0.058 (3)0.076 (3)0.008 (2)0.003 (2)0.038 (3)
C270.071 (2)0.060 (3)0.060 (3)0.011 (2)0.0174 (19)0.032 (2)
C280.050 (2)0.065 (3)0.061 (3)0.005 (2)0.0048 (19)0.030 (2)
C290.072 (3)0.076 (3)0.088 (3)0.023 (2)0.028 (2)0.041 (3)
C300.079 (3)0.109 (4)0.095 (4)0.020 (3)0.034 (2)0.057 (3)
C310.075 (3)0.094 (4)0.086 (4)0.003 (3)0.006 (3)0.055 (3)
C320.092 (3)0.068 (3)0.099 (4)0.018 (3)0.010 (3)0.042 (3)
C330.065 (3)0.082 (3)0.088 (3)0.020 (2)0.021 (2)0.040 (3)
C340.058 (3)0.107 (4)0.132 (4)0.021 (2)0.023 (2)0.066 (3)
C350.143 (4)0.142 (5)0.169 (5)0.002 (3)0.030 (4)0.118 (4)
Geometric parameters (Å, º) top
Cl1—C131.731 (4)C16—C211.403 (3)
Cl2—C251.737 (4)C16—C171.405 (3)
O1—C71.220 (3)C17—C181.364 (3)
O2—C71.347 (3)C17—H170.9300
O2—C81.452 (3)C18—C191.381 (4)
N1—C161.388 (3)C18—H180.9300
N1—C61.455 (3)C19—C201.376 (4)
N1—C21.460 (3)C19—C341.518 (4)
N2—C41.354 (3)C20—C211.375 (4)
N2—C281.437 (4)C20—H200.9300
N2—H20.8600C21—H210.9300
C2—C31.512 (4)C22—C231.378 (4)
C2—C101.528 (4)C22—C271.391 (4)
C2—H2A0.9800C23—C241.383 (4)
C3—C41.359 (4)C23—H230.9300
C3—C71.443 (4)C24—C251.369 (4)
C4—C51.494 (4)C24—H240.9300
C5—C61.522 (3)C25—C261.378 (5)
C5—H5A0.9700C26—C271.384 (4)
C5—H5B0.9700C26—H260.9300
C6—C221.519 (4)C27—H270.9300
C6—H60.9800C28—C291.362 (4)
C8—C91.436 (4)C28—C331.367 (4)
C8—H8A0.9700C29—C301.387 (4)
C8—H8B0.9700C29—H290.9300
C9—H9A0.9600C30—C311.374 (5)
C9—H9B0.9600C30—H300.9300
C9—H9C0.9600C31—C321.365 (5)
C10—C111.386 (4)C31—C351.529 (4)
C10—C151.389 (4)C32—C331.389 (4)
C11—C121.370 (4)C32—H320.9300
C11—H110.9300C33—H330.9300
C12—C131.361 (4)C34—H34A0.9600
C12—H120.9300C34—H34B0.9600
C13—C141.374 (4)C34—H34C0.9600
C14—C151.386 (4)C35—H35A0.9600
C14—H140.9300C35—H35B0.9600
C15—H150.9300C35—H35C0.9600
C7—O2—C8117.1 (3)N1—C16—C17122.3 (3)
C16—N1—C6119.9 (2)C21—C16—C17116.1 (3)
C16—N1—C2121.2 (2)C18—C17—C16121.2 (3)
C6—N1—C2118.8 (2)C18—C17—H17119.4
C4—N2—C28125.8 (3)C16—C17—H17119.4
C4—N2—H2117.1C17—C18—C19122.5 (3)
C28—N2—H2117.1C17—C18—H18118.8
N1—C2—C3111.4 (2)C19—C18—H18118.8
N1—C2—C10113.5 (2)C20—C19—C18116.8 (3)
C3—C2—C10112.5 (2)C20—C19—C34121.4 (3)
N1—C2—H2A106.3C18—C19—C34121.7 (3)
C3—C2—H2A106.3C21—C20—C19122.2 (3)
C10—C2—H2A106.3C21—C20—H20118.9
C4—C3—C7121.3 (3)C19—C20—H20118.9
C4—C3—C2116.8 (3)C20—C21—C16121.2 (3)
C7—C3—C2121.9 (3)C20—C21—H21119.4
N2—C4—C3124.8 (3)C16—C21—H21119.4
N2—C4—C5118.9 (3)C23—C22—C27118.2 (3)
C3—C4—C5116.4 (3)C23—C22—C6123.0 (3)
C4—C5—C6109.2 (3)C27—C22—C6118.8 (3)
C4—C5—H5A109.8C22—C23—C24121.7 (3)
C6—C5—H5A109.8C22—C23—H23119.1
C4—C5—H5B109.8C24—C23—H23119.1
C6—C5—H5B109.8C25—C24—C23118.9 (4)
H5A—C5—H5B108.3C25—C24—H24120.6
N1—C6—C22114.5 (3)C23—C24—H24120.6
N1—C6—C5109.8 (2)C24—C25—C26121.2 (4)
C22—C6—C5110.3 (2)C24—C25—Cl2119.8 (4)
N1—C6—H6107.3C26—C25—Cl2119.0 (3)
C22—C6—H6107.3C25—C26—C27119.1 (3)
C5—C6—H6107.3C25—C26—H26120.4
O1—C7—O2122.2 (3)C27—C26—H26120.4
O1—C7—C3125.6 (3)C26—C27—C22120.8 (4)
O2—C7—C3112.2 (3)C26—C27—H27119.6
C9—C8—O2108.8 (3)C22—C27—H27119.6
C9—C8—H8A109.9C29—C28—C33119.5 (3)
O2—C8—H8A109.9C29—C28—N2121.8 (3)
C9—C8—H8B109.9C33—C28—N2118.7 (3)
O2—C8—H8B109.9C28—C29—C30120.1 (4)
H8A—C8—H8B108.3C28—C29—H29120.0
C8—C9—H9A109.5C30—C29—H29120.0
C8—C9—H9B109.5C31—C30—C29121.1 (4)
H9A—C9—H9B109.5C31—C30—H30119.5
C8—C9—H9C109.5C29—C30—H30119.5
H9A—C9—H9C109.5C32—C31—C30118.2 (4)
H9B—C9—H9C109.5C32—C31—C35120.2 (4)
C11—C10—C15117.0 (3)C30—C31—C35121.6 (4)
C11—C10—C2119.3 (3)C31—C32—C33121.0 (4)
C15—C10—C2123.6 (3)C31—C32—H32119.5
C12—C11—C10121.5 (3)C33—C32—H32119.5
C12—C11—H11119.3C28—C33—C32120.1 (4)
C10—C11—H11119.3C28—C33—H33119.9
C13—C12—C11120.7 (3)C32—C33—H33119.9
C13—C12—H12119.7C19—C34—H34A109.5
C11—C12—H12119.7C19—C34—H34B109.5
C12—C13—C14119.9 (4)H34A—C34—H34B109.5
C12—C13—Cl1120.5 (3)C19—C34—H34C109.5
C14—C13—Cl1119.5 (3)H34A—C34—H34C109.5
C13—C14—C15119.3 (3)H34B—C34—H34C109.5
C13—C14—H14120.4C31—C35—H35A109.5
C15—C14—H14120.4C31—C35—H35B109.5
C14—C15—C10121.7 (3)H35A—C35—H35B109.5
C14—C15—H15119.2C31—C35—H35C109.5
C10—C15—H15119.2H35A—C35—H35C109.5
N1—C16—C21121.6 (3)H35B—C35—H35C109.5
C16—N1—C2—C3149.8 (3)C2—C10—C15—C14176.6 (3)
C6—N1—C2—C332.9 (4)C6—N1—C16—C2112.6 (4)
C16—N1—C2—C1082.0 (3)C2—N1—C16—C21170.0 (3)
C6—N1—C2—C1095.3 (3)C6—N1—C16—C17166.2 (3)
N1—C2—C3—C444.2 (4)C2—N1—C16—C1711.2 (4)
C10—C2—C3—C484.6 (3)N1—C16—C17—C18178.8 (3)
N1—C2—C3—C7133.7 (3)C21—C16—C17—C180.0 (5)
C10—C2—C3—C797.6 (4)C16—C17—C18—C190.5 (5)
C28—N2—C4—C3164.0 (3)C17—C18—C19—C200.6 (5)
C28—N2—C4—C514.7 (5)C17—C18—C19—C34177.6 (3)
C7—C3—C4—N23.8 (5)C18—C19—C20—C210.2 (5)
C2—C3—C4—N2178.3 (3)C34—C19—C20—C21178.0 (3)
C7—C3—C4—C5174.9 (3)C19—C20—C21—C160.3 (5)
C2—C3—C4—C53.0 (4)N1—C16—C21—C20178.4 (3)
N2—C4—C5—C6131.0 (3)C17—C16—C21—C200.4 (4)
C3—C4—C5—C647.9 (4)N1—C6—C22—C2328.6 (4)
C16—N1—C6—C2273.9 (3)C5—C6—C22—C2395.9 (3)
C2—N1—C6—C22108.7 (3)N1—C6—C22—C27154.7 (3)
C16—N1—C6—C5161.4 (2)C5—C6—C22—C2780.8 (3)
C2—N1—C6—C516.0 (4)C27—C22—C23—C241.2 (5)
C4—C5—C6—N156.5 (3)C6—C22—C23—C24175.6 (3)
C4—C5—C6—C2270.6 (3)C22—C23—C24—C250.7 (5)
C8—O2—C7—O13.0 (5)C23—C24—C25—C261.0 (5)
C8—O2—C7—C3176.3 (3)C23—C24—C25—Cl2179.4 (2)
C4—C3—C7—O15.2 (5)C24—C25—C26—C272.2 (5)
C2—C3—C7—O1177.0 (3)Cl2—C25—C26—C27178.3 (2)
C4—C3—C7—O2175.6 (3)C25—C26—C27—C221.7 (5)
C2—C3—C7—O22.2 (4)C23—C22—C27—C260.0 (4)
C7—O2—C8—C9174.9 (3)C6—C22—C27—C26176.9 (3)
N1—C2—C10—C11172.4 (3)C4—N2—C28—C29100.0 (4)
C3—C2—C10—C1144.8 (4)C4—N2—C28—C3379.7 (5)
N1—C2—C10—C1510.7 (4)C33—C28—C29—C301.2 (6)
C3—C2—C10—C15138.3 (3)N2—C28—C29—C30179.1 (3)
C15—C10—C11—C120.1 (5)C28—C29—C30—C310.7 (6)
C2—C10—C11—C12177.2 (3)C29—C30—C31—C320.6 (7)
C10—C11—C12—C130.4 (5)C29—C30—C31—C35179.8 (4)
C11—C12—C13—C140.2 (6)C30—C31—C32—C330.8 (6)
C11—C12—C13—Cl1178.9 (3)C35—C31—C32—C33179.9 (4)
C12—C13—C14—C150.3 (5)C29—C28—C33—C321.4 (6)
Cl1—C13—C14—C15179.4 (3)N2—C28—C33—C32178.8 (3)
C13—C14—C15—C100.6 (5)C31—C32—C33—C281.3 (6)
C11—C10—C15—C140.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.102.707 (4)127
C9—H9A···Cl2i0.962.743.698 (4)173
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC34H32Cl2N2O2
Mr571.52
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.0851 (6), 12.4340 (8), 14.2414 (10)
α, β, γ (°)113.405 (6), 102.233 (5), 101.194 (5)
V3)1522.63 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.853, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13336, 5342, 2181
Rint0.059
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.109, 0.89
No. of reflections5342
No. of parameters365
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.102.707 (4)127
C9—H9A···Cl2i0.962.743.698 (4)173
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. GB is thankful to the CSIR, New Delhi, for financial support [grant No. 02 (110)/12/EMR-II]. VKG is thankful to the University of Jammu, Jammu, for financial support.

References

First citationAnthal, S., Brahmachari, G., Das, S., Kant, R. & Gupta, V. K. (2013). Acta Cryst. E69, o299–o300.  CSD CrossRef IUCr Journals Google Scholar
First citationBrahmachari, G. & Das, S. (2012). Tetrahedron Lett. 53, 1479–1484.  Web of Science CSD CrossRef CAS Google Scholar
First citationBreman, J., Egan, A. & Keusch, G. (2001). Am. J. Trop. Med. Hyg. 64, iv–vii.  Web of Science PubMed CAS Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKamei, K., Maeda, N., Katswagi-Ogino, R., Koyamaa, M., Nakajima, M., Tatsuoka, T., Ohno, T. & Inoue, T. (2005). Bioorg. Med. Chem. Lett. 15, 2990–2993.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, T. K., Khan, Md. M. & Bannuru, K. K. R. (2010). Tetrahedron, 66, 7762–7772.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPinder, A. R. (1992). Nat. Prod. Rep. 9, 491–504.  CrossRef CAS Web of Science Google Scholar
First citationSambyal, A., Bamezai, R. K., Razdan, T. K. & Gupta, V. K. (2011). J. Chem. Crystallogr. 41, 868–873.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatson, P. S., Jiang, B. & Scott, B. (2000). Org. Lett. 2, 3679–3681.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o454-o455
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds