organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-(1-Oxo­propane-1,3-di­yl)bis­­(1,3-thia­zolidine-2-thione) chloro­benzene hemisolvate

aNaval Research Laboratory, Chemistry Division, code 6100, 4555 Overlook Av, SW, Washington, DC 20375, USA, and bHoward University, Chemistry Dept, Washington, DC 20059, USA
*Correspondence e-mail: andrew.purdy@nrl.navy.mil

(Received 24 November 2012; accepted 31 January 2013; online 13 February 2013)

The title compound, C9H12N2OS4·0.5C6H5Cl, which contains two 1,3-thia­zolidine-2-thione rings, is a by-product of the synthesis of 3-acryloyl-1,3-thia­zolidine-2-thione. The dihedral angle between these rings is 79.95 (9)°, with both rings displaying a twisted conformation. The twist angle of the amide group is 5.6 (1)°. In the crystal, the molecules are linked into [001] chains by C—H⋯O interactions. The chloro­benzene solvent mol­ecule was found to show unresolvable disorder about a centre of inversion and its contribution to the scattering was removed with the SQUEEZE option in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155].

Related literature

For N-substituted 1,3-thia­zolidine-2-thione and for further synthetic details, see: Evans & Thomson (2005[Evans, D. & Thomson, R. (2005). J. Am. Chem. Soc. 157, 10506-10507.]). For the defin­ition of amide twist angles, see: Yamada et al. (1993[Yamada, S. (1993). Angew. Chem. Int. Ed. Engl. 32, 1083-1085.]). For details of the use of SQUEEZE, see: van der Sluis & Spek (1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12N2OS4·0.5C6H5Cl

  • Mr = 348.72

  • Monoclinic, P 21 /n

  • a = 8.59506 (18) Å

  • b = 9.4435 (2) Å

  • c = 18.2640 (4) Å

  • β = 92.614 (2)°

  • V = 1480.90 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 6.68 mm−1

  • T = 123 K

  • 0.45 × 0.25 × 0.14 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: multi-scan [CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.757, Tmax = 1.000

  • 5329 measured reflections

  • 2971 independent reflections

  • 2486 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.116

  • S = 1.05

  • 2971 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1i 0.99 2.55 3.340 (4) 137
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, 3,3'-(1-oxopropane-1,3-diyl)bis(1,3-thiazolidine-2-thione), is a by-product of the synthesis of 3-acryloyl-1,3-thiazolidine-2-thione. The formation of the title compound results from a nucleophilic attack of the nitrogen of excess 1,3-thiazolidine-2-thione, on the terminal alkene of 3-acryloyl-1,3-thiazolidine-2-thione.

The crystallographic data show both of the thiazolidine-2-thione rings display a twist conformation; C2 and C3 are displaced 0.269 (4) Å and -0.070 (4) Å respectively from the mean N1 C1 S1 S2 plane, while C8 and C9 are displaced 0.118 (4) Å and -0.175 (4) Å respectively from the mean N2 C7 S3 S4 plane. These two planes form a dihedral angle of 79.97 (9)°. The amide present in the title compound is nearly flat, with a twist angle about the C4–N1 bond of 5.6 (1)° (calculated according to the definition given by Yamada 1993).

Figure 2 shows the molecular packing for C9H12N2OS4, modified using the SQUEEZE function. The void in the center of the unit cell contains a disordered molecule of chlorobenzene, the recrystallization solvent used in this experiment, lying on a center of inversion.

Related literature top

For N-substituted 1,3-thiazolidine-2-thione and for further synthetic details, see: Evans & Thomson (2005). For the definition of amide twist angles, see: Yamada et al. (1993). For the use of SQUEEZE to remove the contribution of disordered solvents, see: van der Sluis & Spek (1990).

Experimental top

The procedure for the synthesis of 3-acryloyl-1,3-thiazolidine-2-thione was modeled after that of Evans & Thomson (2005). Briefly, 1,3-thiazolidine-2-thione (2.27 g, 19.0 mmol) and Et3N (1.93 g, 18.9 mmol) in CH2Cl2 (50 ml) were added to a round-bottom flask with an egg-shaped stir bar and a pinch of phenothiazine inhibitor. The flask was placed in an EtOH/dry ice bath (-78°C) and kept under N2. Acryloyl chloride (1.71 g, 18.9 mmol) in CH2Cl2 (10 mL) was added dropwise to the flask over 5 minutes. The reaction mixture was slowly warmed to room temperature and stirred for 1 h. The yellow product mixture was then washed with H2O, and the aqueous layer was extracted twice with CH2Cl2. The combined organic layers were extracted twice with saturated NaHCO3, once more with H2O, dried (MgSO4), filtered, and concentrated. One grain of CuCl2 was added to the flask as polymerization inhibitor. The reaction mixture was poured into CHCl3, and the title compound precipitated as a light-yellow solid. The solid title compound was recrystallized from chlorobenzene solution to give almost colorless prisms.

NMR Spectrum of title compound (CH2Cl2 solution): 1H 4.539, 4.162, 4.044, 3.697, 3.302, 3.275 (t, 2H); 13C 202.26 (C=S), 196.85 (C=S), 172.06 (C=O), 57.73, 56.09, 44.90, 35.63, 28.43, 27.65 (CH2). IR Spectrum (film on KBr): 2988(vw), 2930(w), 2929(vw), 2890(vw), 2854(vw) (C—H), 1690 (s, C=O), 1488 (s), 1453 (w), 1424 (w), 1365 (m), 1316 (s), 1278 (s), 1224 (s), 1157(s), 1050 (m), 1027 (w), 995 (w), 884 (w).

Refinement top

H atoms were placed in calculated positions with C—H = 0.99 Å for the CH2 H atoms, and refined using riding model, with Uiso(H) = 1.2Ueq(C,N). There was a molecule of chlorobenzene located on an inversion center but disordered over multiple conformations. After unsuccessful attempts to model this SQUEEZE was used to remove its contribution (Van der Sluis & Spek, 1990).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Diagram of the title compound showing 50% displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing of C9H12N2OS4, viewed down the b axis.
3,3'-(1-Oxopropane-1,3-diyl)bis(1,3-thiazolidine-2-thione) chlorobenzene hemisolvate top
Crystal data top
C9H12N2OS4·0.5C6H5ClF(000) = 724
Mr = 348.72Dx = 1.564 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 8.59506 (18) ÅCell parameters from 2930 reflections
b = 9.4435 (2) Åθ = 4.7–75.6°
c = 18.2640 (4) ŵ = 6.68 mm1
β = 92.614 (2)°T = 123 K
V = 1480.90 (6) Å3Prism, colorless
Z = 40.45 × 0.25 × 0.14 mm
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
2971 independent reflections
Radiation source: Enhance (Cu) X-ray Source2486 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.5081 pixels mm-1θmax = 75.8°, θmin = 4.9°
ω scansh = 910
Absorption correction: multi-scan
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
k = 1110
Tmin = 0.757, Tmax = 1.000l = 2220
5329 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0574P)2 + 1.0183P]
where P = (Fo2 + 2Fc2)/3
2971 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C9H12N2OS4·0.5C6H5ClV = 1480.90 (6) Å3
Mr = 348.72Z = 4
Monoclinic, P21/nCu Kα radiation
a = 8.59506 (18) ŵ = 6.68 mm1
b = 9.4435 (2) ÅT = 123 K
c = 18.2640 (4) Å0.45 × 0.25 × 0.14 mm
β = 92.614 (2)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
2971 independent reflections
Absorption correction: multi-scan
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
2486 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 1.000Rint = 0.029
5329 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.05Δρmax = 0.44 e Å3
2971 reflectionsΔρmin = 0.32 e Å3
145 parameters
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.35.21 (release 20-01-2012 CrysAlis171 .NET) (compiled Jan 23 2012,18:06:46) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38391 (7)0.58687 (8)0.30163 (4)0.02748 (18)
S20.16697 (8)0.60275 (8)0.17409 (4)0.02960 (19)
S30.75412 (7)0.06152 (7)0.39778 (4)0.02613 (18)
S41.01178 (8)0.25235 (8)0.44956 (4)0.02741 (18)
O10.5444 (2)0.2367 (2)0.15272 (10)0.0247 (4)
N10.3858 (2)0.4161 (2)0.17961 (11)0.0194 (4)
N20.8680 (3)0.2837 (2)0.32473 (12)0.0232 (5)
C10.3274 (3)0.5256 (3)0.22011 (14)0.0210 (5)
C20.1553 (4)0.4708 (4)0.10302 (18)0.0398 (8)
H2A0.06920.40390.11140.048*
H2B0.13630.51600.05450.048*
C30.3092 (3)0.3939 (3)0.10594 (14)0.0235 (5)
H3A0.29220.29150.09710.028*
H3B0.37620.43090.06760.028*
C40.5170 (3)0.3302 (3)0.19528 (14)0.0193 (5)
C50.6201 (3)0.3555 (3)0.26305 (13)0.0180 (5)
H5A0.56210.33380.30730.022*
H5B0.65220.45610.26530.022*
C60.7637 (3)0.2609 (3)0.26076 (14)0.0254 (5)
H6A0.73080.16040.25900.030*
H6B0.81960.28150.21580.030*
C70.8692 (3)0.2009 (3)0.38392 (13)0.0195 (5)
C81.0683 (4)0.4060 (4)0.39771 (18)0.0404 (8)
H8A1.03060.49370.42060.048*
H8B1.18310.41110.39590.048*
C90.9945 (4)0.3887 (3)0.32101 (18)0.0355 (7)
H9A0.95230.48040.30300.043*
H9B1.07320.35580.28690.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0230 (3)0.0325 (4)0.0272 (3)0.0043 (3)0.0034 (2)0.0095 (3)
S20.0241 (3)0.0368 (4)0.0281 (3)0.0123 (3)0.0033 (2)0.0017 (3)
S30.0224 (3)0.0275 (3)0.0290 (3)0.0045 (2)0.0071 (2)0.0041 (3)
S40.0287 (3)0.0288 (4)0.0242 (3)0.0057 (3)0.0048 (2)0.0034 (3)
O10.0292 (9)0.0204 (9)0.0244 (9)0.0041 (8)0.0012 (7)0.0059 (7)
N10.0190 (9)0.0212 (10)0.0180 (9)0.0019 (8)0.0027 (7)0.0001 (8)
N20.0277 (11)0.0201 (11)0.0216 (10)0.0042 (9)0.0003 (8)0.0007 (8)
C10.0167 (11)0.0217 (12)0.0252 (12)0.0014 (9)0.0066 (9)0.0029 (10)
C20.0347 (16)0.0485 (19)0.0350 (16)0.0171 (15)0.0120 (13)0.0150 (14)
C30.0253 (12)0.0265 (13)0.0189 (12)0.0016 (11)0.0019 (9)0.0003 (10)
C40.0189 (11)0.0175 (11)0.0218 (12)0.0024 (9)0.0053 (9)0.0025 (9)
C50.0201 (11)0.0170 (11)0.0170 (11)0.0000 (9)0.0024 (9)0.0004 (9)
C60.0257 (12)0.0271 (14)0.0228 (12)0.0075 (11)0.0038 (10)0.0027 (11)
C70.0157 (10)0.0224 (12)0.0205 (11)0.0063 (9)0.0019 (9)0.0045 (9)
C80.0521 (19)0.0308 (16)0.0373 (17)0.0188 (14)0.0080 (14)0.0101 (13)
C90.0443 (17)0.0287 (15)0.0327 (15)0.0086 (13)0.0064 (13)0.0085 (12)
Geometric parameters (Å, º) top
S1—C11.650 (3)C2—H2B0.9900
S2—C11.741 (3)C3—H3A0.9900
S2—C21.799 (3)C3—H3B0.9900
S3—C71.673 (3)C4—C51.508 (3)
S4—C71.744 (3)C5—C61.526 (3)
S4—C81.811 (3)C5—H5A0.9900
O1—C41.206 (3)C5—H5B0.9900
N1—C11.379 (3)C6—H6A0.9900
N1—C41.408 (3)C6—H6B0.9900
N1—C31.486 (3)C8—C91.520 (4)
N2—C71.334 (4)C8—H8A0.9900
N2—C61.456 (3)C8—H8B0.9900
N2—C91.475 (4)C9—H9A0.9900
C2—C31.508 (4)C9—H9B0.9900
C2—H2A0.9900
C1—S2—C294.31 (13)C4—C5—H5A109.8
C7—S4—C893.47 (14)C6—C5—H5A109.8
C1—N1—C4129.1 (2)C4—C5—H5B109.8
C1—N1—C3115.8 (2)C6—C5—H5B109.8
C4—N1—C3114.9 (2)H5A—C5—H5B108.3
C7—N2—C6123.1 (2)N2—C6—C5111.2 (2)
C7—N2—C9116.9 (2)N2—C6—H6A109.4
C6—N2—C9119.4 (2)C5—C6—H6A109.4
N1—C1—S1130.4 (2)N2—C6—H6B109.4
N1—C1—S2110.76 (19)C5—C6—H6B109.4
S1—C1—S2118.87 (15)H6A—C6—H6B108.0
C3—C2—S2106.8 (2)N2—C7—S3127.0 (2)
C3—C2—H2A110.4N2—C7—S4111.9 (2)
S2—C2—H2A110.4S3—C7—S4121.13 (15)
C3—C2—H2B110.4C9—C8—S4106.6 (2)
S2—C2—H2B110.4C9—C8—H8A110.4
H2A—C2—H2B108.6S4—C8—H8A110.4
N1—C3—C2108.4 (2)C9—C8—H8B110.4
N1—C3—H3A110.0S4—C8—H8B110.4
C2—C3—H3A110.0H8A—C8—H8B108.6
N1—C3—H3B110.0N2—C9—C8107.9 (2)
C2—C3—H3B110.0N2—C9—H9A110.1
H3A—C3—H3B108.4C8—C9—H9A110.1
O1—C4—N1117.9 (2)N2—C9—H9B110.1
O1—C4—C5121.4 (2)C8—C9—H9B110.1
N1—C4—C5120.7 (2)H9A—C9—H9B108.4
C4—C5—C6109.3 (2)
C4—N1—C1—S13.8 (4)N1—C4—C5—C6172.5 (2)
C3—N1—C1—S1177.4 (2)C7—N2—C6—C597.3 (3)
C4—N1—C1—S2177.3 (2)C9—N2—C6—C592.1 (3)
C3—N1—C1—S23.7 (3)C4—C5—C6—N2179.0 (2)
C2—S2—C1—N18.0 (2)C6—N2—C7—S31.3 (4)
C2—S2—C1—S1170.96 (19)C9—N2—C7—S3172.1 (2)
C1—S2—C2—C316.8 (3)C6—N2—C7—S4177.92 (19)
C1—N1—C3—C216.4 (3)C9—N2—C7—S47.1 (3)
C4—N1—C3—C2169.0 (2)C8—S4—C7—N24.2 (2)
S2—C2—C3—N120.6 (3)C8—S4—C7—S3176.58 (19)
C1—N1—C4—O1177.7 (2)C7—S4—C8—C913.2 (3)
C3—N1—C4—O18.6 (3)C7—N2—C9—C817.1 (4)
C1—N1—C4—C52.6 (4)C6—N2—C9—C8171.7 (3)
C3—N1—C4—C5171.0 (2)S4—C8—C9—N218.3 (3)
O1—C4—C5—C67.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.992.553.340 (4)137
Symmetry code: (i) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H12N2OS4·0.5C6H5Cl
Mr348.72
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)8.59506 (18), 9.4435 (2), 18.2640 (4)
β (°) 92.614 (2)
V3)1480.90 (6)
Z4
Radiation typeCu Kα
µ (mm1)6.68
Crystal size (mm)0.45 × 0.25 × 0.14
Data collection
DiffractometerAgilent Xcalibur (Ruby, Gemini)
diffractometer
Absorption correctionMulti-scan
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.757, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5329, 2971, 2486
Rint0.029
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.116, 1.05
No. of reflections2971
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.32

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.992.553.340 (4)136.5
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Footnotes

NREIP intern at NRL.

Acknowledgements

We thank The Office Of Naval Research for financial support. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEvans, D. & Thomson, R. (2005). J. Am. Chem. Soc. 157, 10506–10507.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.  CrossRef Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, S. (1993). Angew. Chem. Int. Ed. Engl. 32, 1083–1085.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds