supplementary materials


hb7025 scheme

Acta Cryst. (2013). E69, m152    [ doi:10.1107/S1600536813003449 ]

Poly[bis(1,3-dimethylimidazolidin-2-one)([mu]2-2,5-dioxidoterephthalato)zirconium(IV)]

M. Maercz, D. S. Wragg, P. D. C. Dietzel and H. Fjellvåg

Abstract top

In the title coordination polymer, [Zr(C8H2O6)(C5H10N2O)2]n, the ZrIV atom (site symmetry 2) is coordinated by two O,O'-bidentate 2,5-dioxidoterephthalate (DHTP4-) ligands and two O-bonded 1,3-dimethyl-2-imidazolidinone (DMI) ligands (the latter in a cis orientation) in a distorted ZrO6 octahedral geometry. The deprotonated hydroxy and carboxy O atoms of the DHTP4- ligand chelate the ZrIV ion via a six-membered ring; the dihedral angle between the carboxylate group and the aromatic ring is 14.46 (11)°. The DHTP4- ligand is completed by crystallographic inversion symmetry and coordinates to two ZrIV atoms, thereby forming polymeric zigzag chains propagating in [001].

Comment top

The title compound was synthesized as a part of a larger project in which the possibility to form new zirconium containing metal organic frameworks (MOFs) using the linker 2,5-dihydroxyterephthalic acid (DHTP) was investigated. Zirconium containing MOFs (Chavan et al., 2012) using terephthalic acid have shown extraordinary thermal stability whereas DHTP containing MOFs (Dietzel et al., 2005, 2006) have shown remarkable sorption properties.

Related literature top

For examples of DHTP-containing MOFs, see: Dietzel et al. (2005, 2006). For examples of zirconium MOFs, see: Chavan et al. (2012).

Experimental top

Zirconium(IV) acetylacetonate (0.098 g, 0.2 mmol) and 2,5-dihydroxyterephthalic acid (0.079 g, 0.4 mmol) were dissolved in in 5 ml 1,3-dimethyl-2-imidazolidinone (DMI) in a Teflon liner of 23 ml volume. The teflon liner was put into a steel autoclave, the steel autoclave was closed and shaken for homogeneity. The mixture was reacted for 3 d at 160°C. Reaction yielded a yellow crystalline substance with larger colorless block shaped crystals. The product was collected by filtration, washed with DMI and dried over night at room temperature in ambient atmosphere.

Refinement top

Hydrogen atoms were placed geometrically in ideal positions and refined using a riding model, the Uiso set to 1.5 times the thermal parameter of the carbon atom to which they are attached for methyl groups and 1.2 times for other hydrogen atoms.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with 50% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. Hydrogen atoms are omitted for clarity.
Poly[bis(1,3-dimethylimidazolidin-2-one)(µ2-2,5-dioxidoterephthalato)zirconium(IV)] top
Crystal data top
[Zr(C8H2O6)(C5H10N2O)2]F(000) = 1048
Mr = 513.62Dx = 1.586 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.550 (3) ÅCell parameters from 1603 reflections
b = 8.0828 (12) Åθ = 2.4–25.4°
c = 15.425 (2) ŵ = 0.56 mm1
β = 100.558 (2)°T = 293 K
V = 2151.0 (6) Å3Block, colourless
Z = 40.10 × 0.10 × 0.08 mm
Data collection top
Bruker SMART CCD
diffractometer
2448 independent reflections
Radiation source: sealed tube1958 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 27.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 2222
Tmin = 0.946, Tmax = 0.956k = 107
5721 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0465P)2 + 1.4169P]
where P = (Fo2 + 2Fc2)/3
2448 reflections(Δ/σ)max < 0.001
141 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Zr(C8H2O6)(C5H10N2O)2]V = 2151.0 (6) Å3
Mr = 513.62Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.550 (3) ŵ = 0.56 mm1
b = 8.0828 (12) ÅT = 293 K
c = 15.425 (2) Å0.10 × 0.10 × 0.08 mm
β = 100.558 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2448 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
1958 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.956Rint = 0.022
5721 measured reflectionsθmax = 27.4°
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.096Δρmax = 0.36 e Å3
S = 1.03Δρmin = 0.34 e Å3
2448 reflectionsAbsolute structure: ?
141 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.10405 (16)0.0141 (4)0.37387 (19)0.0479 (7)
C20.04841 (14)0.0098 (3)0.43769 (16)0.0383 (6)
C30.01428 (14)0.1202 (3)0.43241 (16)0.0376 (6)
C40.06111 (15)0.1071 (3)0.50427 (17)0.0411 (6)
H40.10260.17970.50680.049*
C50.14154 (18)0.5409 (4)0.2821 (2)0.0499 (7)
C60.2275 (3)0.7161 (6)0.2379 (5)0.123 (2)
H6A0.21770.83420.23790.148*
H6B0.26230.69290.19730.148*
C70.2605 (2)0.6587 (6)0.3262 (5)0.119 (2)
H7A0.27110.75060.36710.143*
H7B0.30800.59720.32640.143*
C80.0982 (4)0.6567 (8)0.1358 (3)0.145 (2)
H8A0.12090.71980.09430.217*
H8B0.05600.71780.15190.217*
H8C0.07930.55350.10940.217*
C90.2002 (4)0.4805 (7)0.4328 (3)0.138 (2)
H9A0.24850.50440.47100.206*
H9B0.19380.36290.42660.206*
H9C0.15830.52570.45750.206*
N10.15590 (19)0.6252 (4)0.2134 (2)0.0794 (10)
N20.19989 (19)0.5522 (4)0.3487 (3)0.0834 (10)
O10.08341 (11)0.0970 (3)0.30113 (13)0.0528 (5)
O20.02943 (11)0.2381 (2)0.36978 (12)0.0447 (4)
O30.08044 (12)0.4612 (3)0.28274 (14)0.0596 (6)
O40.16535 (14)0.0572 (4)0.39070 (16)0.0871 (9)
Zr10.00000.26734 (5)0.25000.03931 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0396 (16)0.0571 (18)0.0517 (16)0.0091 (13)0.0210 (13)0.0038 (13)
C20.0318 (14)0.0452 (15)0.0397 (13)0.0033 (11)0.0117 (11)0.0024 (11)
C30.0352 (14)0.0391 (15)0.0400 (13)0.0023 (11)0.0105 (11)0.0030 (11)
C40.0327 (14)0.0481 (16)0.0448 (14)0.0084 (12)0.0135 (11)0.0006 (12)
C50.0468 (17)0.0397 (16)0.0657 (19)0.0011 (13)0.0169 (15)0.0060 (14)
C60.085 (4)0.077 (3)0.232 (8)0.017 (3)0.090 (5)0.004 (4)
C70.041 (2)0.080 (3)0.232 (7)0.007 (2)0.014 (3)0.057 (4)
C80.199 (7)0.143 (5)0.090 (4)0.003 (5)0.021 (4)0.057 (4)
C90.185 (6)0.136 (5)0.071 (3)0.039 (4)0.033 (3)0.023 (3)
N10.081 (2)0.065 (2)0.103 (3)0.0082 (17)0.046 (2)0.0122 (17)
N20.062 (2)0.074 (2)0.105 (3)0.0014 (17)0.0073 (19)0.0117 (19)
O10.0457 (12)0.0672 (14)0.0519 (11)0.0144 (10)0.0262 (9)0.0110 (10)
O20.0443 (11)0.0482 (11)0.0451 (10)0.0089 (9)0.0177 (8)0.0031 (8)
O30.0546 (13)0.0640 (14)0.0624 (13)0.0195 (11)0.0167 (10)0.0042 (11)
O40.0589 (15)0.133 (2)0.0792 (17)0.0487 (16)0.0389 (13)0.0420 (16)
Zr10.0351 (2)0.0449 (3)0.0405 (2)0.0000.01366 (15)0.000
Geometric parameters (Å, º) top
C1—O41.206 (3)C7—H7A0.9700
C1—O11.300 (3)C7—H7B0.9700
C1—C21.509 (3)C8—N11.442 (6)
C2—C41.383 (4)C8—H8A0.9600
C2—C31.407 (3)C8—H8B0.9600
C3—O21.348 (3)C8—H8C0.9600
C3—C4i1.391 (3)C9—N21.419 (6)
C4—C3i1.391 (3)C9—H9A0.9600
C4—H40.9300C9—H9B0.9600
C5—O31.253 (3)C9—H9C0.9600
C5—N21.314 (4)Zr1—O12.058 (2)
C5—N11.322 (4)Zr1—O22.0215 (17)
C6—N11.445 (6)Zr1—O32.108 (2)
C6—C71.455 (8)Zr1—O2ii2.0215 (17)
C6—H6A0.9700Zr1—O1ii2.058 (2)
C6—H6B0.9700Zr1—O3ii2.108 (2)
C7—N21.458 (6)
O4—C1—O1121.9 (2)H8B—C8—H8C109.5
O4—C1—C2120.5 (3)N2—C9—H9A109.5
O1—C1—C2117.6 (2)N2—C9—H9B109.5
C4—C2—C3119.6 (2)H9A—C9—H9B109.5
C4—C2—C1117.7 (2)N2—C9—H9C109.5
C3—C2—C1122.7 (2)H9A—C9—H9C109.5
O2—C3—C4i119.5 (2)H9B—C9—H9C109.5
O2—C3—C2122.6 (2)C5—N1—C8123.3 (4)
C4i—C3—C2117.9 (2)C5—N1—C6109.7 (4)
C2—C4—C3i122.5 (2)C8—N1—C6124.9 (5)
C2—C4—H4118.7C5—N2—C9123.9 (4)
C3i—C4—H4118.7C5—N2—C7110.6 (4)
O3—C5—N2125.1 (3)C9—N2—C7125.3 (5)
O3—C5—N1124.1 (3)C1—O1—Zr1137.87 (16)
N2—C5—N1110.8 (3)C3—O2—Zr1133.46 (15)
N1—C6—C7105.1 (4)C5—O3—Zr1156.5 (2)
N1—C6—H6A110.7O2—Zr1—O2ii166.56 (10)
C7—C6—H6A110.7O2—Zr1—O1ii89.38 (7)
N1—C6—H6B110.7O2ii—Zr1—O1ii81.62 (7)
C7—C6—H6B110.7O2—Zr1—O181.62 (7)
H6A—C6—H6B108.8O2ii—Zr1—O189.38 (7)
C6—C7—N2103.2 (4)O1ii—Zr1—O196.05 (12)
C6—C7—H7A111.1O2—Zr1—O398.06 (8)
N2—C7—H7A111.1O2ii—Zr1—O391.94 (8)
C6—C7—H7B111.1O1ii—Zr1—O3170.80 (8)
N2—C7—H7B111.1O1—Zr1—O390.42 (9)
H7A—C7—H7B109.1O2—Zr1—O3ii91.94 (8)
N1—C8—H8A109.5O2ii—Zr1—O3ii98.06 (8)
N1—C8—H8B109.5O1ii—Zr1—O3ii90.42 (9)
H8A—C8—H8B109.5O1—Zr1—O3ii170.80 (8)
N1—C8—H8C109.5O3—Zr1—O3ii83.95 (13)
H8A—C8—H8C109.5
O4—C1—C2—C414.8 (4)C6—C7—N2—C9172.3 (5)
O1—C1—C2—C4165.3 (3)O4—C1—O1—Zr1166.5 (3)
O4—C1—C2—C3164.4 (3)C2—C1—O1—Zr113.3 (5)
O1—C1—C2—C315.4 (4)C4i—C3—O2—Zr1160.28 (19)
C4—C2—C3—O2179.3 (2)C2—C3—O2—Zr120.8 (4)
C1—C2—C3—O20.1 (4)N2—C5—O3—Zr1108.5 (6)
C4—C2—C3—C4i0.4 (4)N1—C5—O3—Zr171.3 (7)
C1—C2—C3—C4i178.8 (3)C3—O2—Zr1—O2ii29.7 (2)
C3—C2—C4—C3i0.4 (5)C3—O2—Zr1—O1ii77.5 (2)
C1—C2—C4—C3i178.9 (3)C3—O2—Zr1—O118.7 (2)
N1—C6—C7—N26.1 (5)C3—O2—Zr1—O3108.0 (2)
O3—C5—N1—C810.0 (6)C3—O2—Zr1—O3ii167.9 (2)
N2—C5—N1—C8170.2 (4)C1—O1—Zr1—O20.7 (3)
O3—C5—N1—C6174.0 (3)C1—O1—Zr1—O2ii169.3 (3)
N2—C5—N1—C66.1 (4)C1—O1—Zr1—O1ii87.7 (3)
C7—C6—N1—C57.7 (5)C1—O1—Zr1—O398.8 (3)
C7—C6—N1—C8171.5 (5)C1—O1—Zr1—O3ii46.7 (6)
O3—C5—N2—C92.9 (6)C5—O3—Zr1—O2139.9 (6)
N1—C5—N2—C9177.3 (4)C5—O3—Zr1—O2ii31.1 (6)
O3—C5—N2—C7178.2 (3)C5—O3—Zr1—O1ii76.5 (8)
N1—C5—N2—C71.9 (4)C5—O3—Zr1—O158.3 (6)
C6—C7—N2—C52.9 (5)C5—O3—Zr1—O3ii129.0 (6)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1/2.
Selected bond lengths (Å) top
Zr1—O12.058 (2)Zr1—O32.108 (2)
Zr1—O22.0215 (17)
references
References top

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Chavan, S., Vitillo, J. G., Gianolio, D., Zavorotynska, O., Civalleri, B., Jakobsen, S., Nilsen, M. H., Valenzano, L., Lamberti, C., Lillerud, K. P. & Bordiga, S. (2012). Phys. Chem. Chem. Phys. 14, 1614–1626.

Dietzel, P. D. C., Morita, Y., Blom, R. & Fjellvåg, H. (2005). Angew. Chem. Int. Ed. 44, 6354–6358.

Dietzel, P. D. C., Panella, B., Hirscher, M., Blom, R. & Fjellvåg, H. (2006). Chem. Commun. pp. 959–961.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.