supplementary materials


hb7032 scheme

Acta Cryst. (2013). E69, m156    [ doi:10.1107/S1600536813003747 ]

Bis{2-bromo-4-chloro-6-[(E)-(2,6-dimethylphenyl)iminomethyl]phenolato-[kappa]2N,O}cobalt(II)

G. Zhu and B.-J. Jiao

Abstract top

In the title complex, [Co(C15H12BrClNO)2], the CoII ion is coordinated by two N,O-bidentate 2-bromo-4-chloro-6-[(E)-(2,6-dimethylphenyl)iminomethyl]phenolate ligands, generating a squashed CoN2O2 tetrahedral coordination geometry. The dihedral angles between the aromatic rings in the ligands are 82.60 (14) and 71.79 (14)°. The complex has approximate local noncrystallographic twofold symmetry. In the crystal, weak aromatic [pi]-[pi] stacking is observed [centroid-centroid separation = 3.6434 (18) Å].

Comment top

Schiff bases possess strong coordination function and may act as bi-, tri-, and poly-dentate ligands to yield plenty of mono-, bi-, tri-, and poly-nuclear Schiff-base complexes, so the design of metal-organic coordination polymers is of current interest in the fields of supramolecular chemistry and crystal engineering because of their potential applications as functional materials (Feng, et al., 2008; Liu, et al., 2009). Meanwhile, Schiff bases and their metal complexes exhibit biological activity as antibiotics, antiviral and antitumour agents because of their specific structures (Billson, et al., 2000; Carlton, et al., 1995). Thus, it is quite important to have a good understanding of the structure of such metal complexes.

In this paper, we report synthesis and crystal structure of a new cobalt(II) complex, bis[2-((E)-(2,6-dimethylphenylimino) methyl)-6-bromo-4-chlorophenol]cobalt(II). The structure of the complex had been established accurately from the X-ray single-crystal diffraction study. The Co(II) ion in the monomeric unit seems to reside in a distorted tetrahedral environment and bonds to two oxygen atoms and two nitrogen atoms from two Schiff bases.

A thermal ellipsoid drawing and crystal packing structure of the title complex are shown in Figure 1 and Figuer 2. The Co(C15H12BrClNO)2 motif is asymmetrical with Co—N and Co—O bonds, the corresponding distances are d(Co—N1) = 2.000 (2), d(Co—O1) = 1.9144 (18), d(Co—N2) = 1.983 (2), d(Co—O2) = 1.9006 (2)Å. The cobalt atom is in a distorted tetrahedral environmente, where the values of trans bond angles also indicate the coordination environment with O(2)—Co(1)—N(1), O(2)—Co(1)—N(2) and O(2)—Co(1)—O(1) angles of 116.97 (9), 94.94 (8) and 113.77 (8) °, respectively.

In the crystal structure of the complex the atoms of the phenyl ring plane A (C(1) C(2) C(3) C(4) C(5) C(6)) and the chelate ring formed by the same ligand plane B ((O(1)/Co(1)/N(1)/C(7)/C(1)/C(6)) are nearly coplanar with a dihedral angle of 8.09 (10) °. Because of the conjugation effects through the imino double bond N(1)C(7), the phenyl ring A and the phenyl ring C (C(8) C(9) C(10) C(11) C(12) C(13)) joined by the N(1)C(7) bond, are non-coplanar (with the dihedral angle 74.55 (7) °, decreasing the steric effects between the two rings. If the two chelate planes, planes B and D((N(2)/Co(1)/O(2)/C(17)/C(16)/C(22)), are compared the dihedral angle is 87.19 (6) °, naerly perpendicular.

Related literature top

For background to Schiff bases, see: Billson et al. (2000); Carlton et al. (1995); Feng et al. (2008); Liu et al. (2009).

Experimental top

3-Bromo-5-chlorosalicylaldehyde (0.2 mmol, 47.2 mg) and 2,6-Dimethylaniline (0.2 mmol, 24.2 mg) were dissolved in EtOH (15 mL). The mixture was stirred for 30 min at room temperature to give an orange solution. To the resulting orange solution was added Co(CH3COO)2 (0.1 mmol, 17.7 mg). Then a clear brown solution was obtained. The title complex were obtained from the solution after 4 d in the form of red chunks. The product was filtered, washed with EtOH, and dried over anhydrous CaCl2 in vacuo overnight. Yield: 70%. Anal. Calcd. (%) for C30H24CoN2O2Cl2Br2: C, 49.08; H, 3.29; N, 3.82. Found (%): C, 49.13; H, 3.43; N, 3.70.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELTXL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex in 30% probability ellipsoids. H atoms are deleted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title complex, viewed along the a axis.
Bis{2-bromo-4-chloro-6-[(E)-(2,6-dimethylphenyl)iminomethyl]phenolato-κ2N,O}cobalt(II) top
Crystal data top
[Co(C15H12BrClNO)2]F(000) = 1460
Mr = 734.16Dx = 1.682 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.608 (2) ÅCell parameters from 10097 reflections
b = 24.157 (4) Åθ = 2.1–29.1°
c = 11.354 (2) ŵ = 3.56 mm1
β = 114.380 (2)°T = 153 K
V = 2899.8 (9) Å3Chunk, red
Z = 40.49 × 0.27 × 0.12 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
7718 independent reflections
Radiation source: Rotating Anode6813 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 28.5714 pixels mm-1θmax = 29.1°, θmin = 2.3°
phi and ω scansh = 1515
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
k = 3332
Tmin = 0.274, Tmax = 0.683l = 1515
32947 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.516P]
where P = (Fo2 + 2Fc2)/3
7718 reflections(Δ/σ)max = 0.002
356 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Co(C15H12BrClNO)2]V = 2899.8 (9) Å3
Mr = 734.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.608 (2) ŵ = 3.56 mm1
b = 24.157 (4) ÅT = 153 K
c = 11.354 (2) Å0.49 × 0.27 × 0.12 mm
β = 114.380 (2)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
7718 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
6813 reflections with I > 2σ(I)
Tmin = 0.274, Tmax = 0.683Rint = 0.047
32947 measured reflectionsθmax = 29.1°
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.119Δρmax = 0.54 e Å3
S = 1.00Δρmin = 0.63 e Å3
7718 reflectionsAbsolute structure: ?
356 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.26654 (3)0.662257 (15)0.69368 (3)0.02274 (10)
Br10.57530 (3)0.644847 (13)1.13829 (3)0.03965 (10)
Br20.09274 (3)0.764024 (13)0.69082 (3)0.04195 (10)
Cl10.36329 (7)0.44165 (3)1.15246 (7)0.03762 (18)
Cl20.01848 (7)0.91557 (3)0.36421 (7)0.03602 (17)
O10.37754 (18)0.64192 (7)0.86650 (17)0.0264 (4)
O20.14215 (17)0.71526 (7)0.68464 (18)0.0272 (4)
N10.2067 (2)0.58493 (9)0.6390 (2)0.0234 (5)
N20.34280 (19)0.70873 (9)0.60062 (19)0.0208 (4)
C10.2975 (2)0.54925 (11)0.8618 (2)0.0231 (5)
C20.2949 (2)0.50225 (11)0.9335 (3)0.0270 (6)
H20.24160.47200.89130.032*
C30.3687 (2)0.49968 (11)1.0639 (3)0.0277 (6)
C40.4516 (3)0.54284 (12)1.1261 (3)0.0287 (6)
H40.50490.54061.21580.034*
C50.4548 (3)0.58833 (11)1.0562 (2)0.0259 (6)
C60.3753 (2)0.59526 (10)0.9230 (2)0.0225 (5)
C70.2230 (2)0.54617 (11)0.7227 (3)0.0254 (5)
H70.18190.51190.69000.030*
C80.1440 (2)0.57063 (11)0.5034 (2)0.0239 (5)
C90.2103 (3)0.53997 (11)0.4467 (3)0.0291 (6)
C100.1533 (3)0.53156 (12)0.3131 (3)0.0326 (6)
H100.19640.51080.27260.039*
C110.0347 (3)0.55301 (12)0.2391 (3)0.0320 (6)
H110.00250.54750.14810.038*
C120.0294 (3)0.58239 (11)0.2975 (3)0.0297 (6)
H120.11050.59710.24560.036*
C130.0222 (3)0.59107 (12)0.4314 (3)0.0280 (6)
C140.3415 (3)0.51866 (15)0.5239 (3)0.0443 (8)
H14A0.39460.54870.57660.053*
H14B0.37730.50470.46510.053*
H14C0.33820.48860.58040.053*
C150.0532 (3)0.62008 (16)0.4928 (3)0.0455 (8)
H15A0.05620.59710.56260.055*
H15B0.13940.62650.42770.055*
H15C0.01340.65560.52820.055*
C160.1773 (2)0.77951 (10)0.5396 (2)0.0210 (5)
C170.1093 (2)0.75899 (10)0.6102 (2)0.0208 (5)
C180.0010 (2)0.78977 (11)0.5987 (3)0.0247 (5)
C190.0383 (2)0.83669 (11)0.5250 (3)0.0244 (5)
H190.11160.85600.51980.029*
C200.0307 (2)0.85564 (11)0.4578 (3)0.0250 (5)
C210.1359 (2)0.82777 (10)0.4642 (2)0.0231 (5)
H210.18150.84120.41730.028*
C220.2909 (2)0.75423 (11)0.5415 (2)0.0221 (5)
H220.33150.77270.49520.027*
C230.4569 (2)0.68953 (11)0.5936 (2)0.0234 (5)
C240.5715 (2)0.69448 (11)0.7039 (3)0.0269 (6)
C250.6783 (3)0.67082 (13)0.6988 (3)0.0376 (7)
H250.75680.67350.77210.045*
C260.6736 (3)0.64344 (14)0.5902 (4)0.0452 (9)
H260.74760.62670.59000.054*
C270.5609 (3)0.64060 (13)0.4820 (3)0.0405 (8)
H270.55860.62250.40670.049*
C280.4499 (3)0.66366 (12)0.4805 (3)0.0288 (6)
C290.5791 (3)0.72459 (13)0.8230 (3)0.0357 (7)
H29A0.54180.70160.86930.043*
H29B0.53250.75960.79770.043*
H29C0.66780.73220.87940.043*
C300.3284 (3)0.66150 (13)0.3601 (3)0.0387 (7)
H30A0.25770.65400.38380.046*
H30B0.33360.63200.30320.046*
H30C0.31480.69710.31480.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02424 (18)0.02062 (18)0.02371 (19)0.00174 (13)0.01026 (15)0.00289 (14)
Br10.04535 (19)0.03466 (18)0.02708 (17)0.00775 (13)0.00302 (14)0.00110 (12)
Br20.03983 (18)0.03857 (19)0.0633 (2)0.01156 (13)0.03721 (17)0.01945 (15)
Cl10.0409 (4)0.0365 (4)0.0354 (4)0.0004 (3)0.0157 (3)0.0140 (3)
Cl20.0365 (4)0.0288 (4)0.0433 (4)0.0091 (3)0.0170 (3)0.0161 (3)
O10.0289 (10)0.0226 (10)0.0251 (10)0.0012 (7)0.0084 (8)0.0037 (8)
O20.0294 (10)0.0232 (10)0.0340 (10)0.0063 (7)0.0182 (8)0.0091 (8)
N10.0228 (11)0.0236 (11)0.0233 (11)0.0004 (8)0.0090 (9)0.0003 (9)
N20.0201 (10)0.0213 (11)0.0214 (10)0.0011 (8)0.0091 (8)0.0013 (8)
C10.0225 (12)0.0230 (13)0.0239 (13)0.0043 (9)0.0098 (10)0.0019 (10)
C20.0248 (13)0.0244 (14)0.0317 (14)0.0003 (10)0.0115 (11)0.0022 (11)
C30.0270 (13)0.0263 (14)0.0327 (15)0.0033 (11)0.0154 (12)0.0093 (12)
C40.0299 (14)0.0336 (15)0.0229 (13)0.0062 (11)0.0113 (11)0.0032 (11)
C50.0278 (13)0.0241 (13)0.0241 (13)0.0021 (10)0.0089 (11)0.0011 (11)
C60.0227 (12)0.0237 (13)0.0232 (13)0.0044 (9)0.0115 (10)0.0038 (10)
C70.0213 (12)0.0255 (13)0.0287 (14)0.0000 (10)0.0096 (11)0.0010 (11)
C80.0238 (12)0.0243 (13)0.0229 (13)0.0013 (10)0.0091 (11)0.0014 (10)
C90.0307 (14)0.0244 (14)0.0301 (15)0.0008 (11)0.0105 (12)0.0026 (11)
C100.0367 (16)0.0277 (15)0.0345 (16)0.0033 (12)0.0160 (13)0.0094 (12)
C110.0378 (16)0.0294 (15)0.0218 (13)0.0041 (12)0.0052 (12)0.0018 (11)
C120.0280 (14)0.0270 (14)0.0255 (14)0.0005 (11)0.0022 (11)0.0002 (11)
C130.0259 (13)0.0290 (15)0.0270 (14)0.0015 (10)0.0088 (11)0.0016 (11)
C140.0354 (17)0.050 (2)0.0422 (18)0.0135 (14)0.0113 (15)0.0085 (16)
C150.0268 (15)0.065 (2)0.0403 (18)0.0040 (15)0.0095 (14)0.0139 (17)
C160.0206 (12)0.0188 (12)0.0225 (12)0.0001 (9)0.0078 (10)0.0020 (10)
C170.0200 (11)0.0193 (12)0.0210 (12)0.0011 (9)0.0063 (10)0.0008 (10)
C180.0221 (12)0.0251 (13)0.0300 (14)0.0015 (10)0.0139 (11)0.0014 (11)
C190.0199 (12)0.0235 (13)0.0275 (14)0.0032 (9)0.0076 (10)0.0008 (11)
C200.0257 (13)0.0215 (13)0.0248 (13)0.0018 (10)0.0075 (11)0.0038 (10)
C210.0225 (12)0.0228 (13)0.0227 (13)0.0001 (10)0.0080 (10)0.0019 (10)
C220.0226 (12)0.0227 (13)0.0210 (12)0.0004 (9)0.0090 (10)0.0013 (10)
C230.0222 (12)0.0239 (13)0.0271 (13)0.0026 (10)0.0133 (11)0.0075 (11)
C240.0239 (13)0.0269 (14)0.0310 (14)0.0002 (10)0.0123 (11)0.0118 (11)
C250.0246 (14)0.0439 (18)0.0441 (18)0.0050 (12)0.0140 (13)0.0217 (15)
C260.0390 (18)0.048 (2)0.061 (2)0.0186 (14)0.0329 (17)0.0210 (17)
C270.057 (2)0.0370 (18)0.0435 (18)0.0131 (15)0.0372 (17)0.0081 (14)
C280.0340 (15)0.0265 (14)0.0303 (15)0.0056 (11)0.0178 (12)0.0062 (11)
C290.0310 (15)0.0383 (17)0.0314 (16)0.0085 (12)0.0066 (13)0.0018 (13)
C300.0503 (19)0.0364 (17)0.0291 (16)0.0005 (14)0.0162 (14)0.0037 (13)
Geometric parameters (Å, º) top
Co1—O21.9006 (18)C13—C151.499 (4)
Co1—O11.9144 (18)C14—H14A0.9800
Co1—N21.983 (2)C14—H14B0.9800
Co1—N12.000 (2)C14—H14C0.9800
Br1—C51.901 (3)C15—H15A0.9800
Br2—C181.898 (3)C15—H15B0.9800
Cl1—C31.742 (3)C15—H15C0.9800
Cl2—C201.746 (3)C16—C211.408 (3)
O1—C61.302 (3)C16—C171.426 (4)
O2—C171.308 (3)C16—C221.445 (3)
N1—C71.291 (3)C17—C181.420 (3)
N1—C81.447 (3)C18—C191.370 (4)
N2—C221.299 (3)C19—C201.392 (4)
N2—C231.437 (3)C19—H190.9500
C1—C21.405 (4)C20—C211.370 (4)
C1—C61.420 (4)C21—H210.9500
C1—C71.456 (4)C22—H220.9500
C2—C31.372 (4)C23—C281.400 (4)
C2—H20.9500C23—C241.406 (4)
C3—C41.397 (4)C24—C251.387 (4)
C4—C51.365 (4)C24—C291.506 (4)
C4—H40.9500C25—C261.381 (5)
C5—C61.420 (4)C25—H250.9500
C7—H70.9500C26—C271.378 (5)
C8—C131.399 (4)C26—H260.9500
C8—C91.402 (4)C27—C281.397 (4)
C9—C101.397 (4)C27—H270.9500
C9—C141.500 (4)C28—C301.506 (4)
C10—C111.383 (4)C29—H29A0.9800
C10—H100.9500C29—H29B0.9800
C11—C121.381 (4)C29—H29C0.9800
C11—H110.9500C30—H30A0.9800
C12—C131.400 (4)C30—H30B0.9800
C12—H120.9500C30—H30C0.9800
O2—Co1—O1113.77 (8)H14B—C14—H14C109.5
O2—Co1—N294.94 (8)C13—C15—H15A109.5
O1—Co1—N2115.58 (8)C13—C15—H15B109.5
O2—Co1—N1116.97 (9)H15A—C15—H15B109.5
O1—Co1—N194.53 (8)C13—C15—H15C109.5
N2—Co1—N1122.51 (9)H15A—C15—H15C109.5
C6—O1—Co1125.79 (17)H15B—C15—H15C109.5
C17—O2—Co1126.25 (17)C21—C16—C17120.0 (2)
C7—N1—C8117.8 (2)C21—C16—C22116.1 (2)
C7—N1—Co1121.47 (18)C17—C16—C22123.9 (2)
C8—N1—Co1120.72 (17)O2—C17—C18119.5 (2)
C22—N2—C23119.1 (2)O2—C17—C16124.3 (2)
C22—N2—Co1122.70 (18)C18—C17—C16116.2 (2)
C23—N2—Co1118.14 (16)C19—C18—C17123.2 (2)
C2—C1—C6120.7 (2)C19—C18—Br2119.1 (2)
C2—C1—C7116.2 (2)C17—C18—Br2117.72 (19)
C6—C1—C7122.9 (2)C18—C19—C20119.0 (2)
C3—C2—C1120.6 (3)C18—C19—H19120.5
C3—C2—H2119.7C20—C19—H19120.5
C1—C2—H2119.7C21—C20—C19120.7 (2)
C2—C3—C4120.3 (2)C21—C20—Cl2120.0 (2)
C2—C3—Cl1120.3 (2)C19—C20—Cl2119.2 (2)
C4—C3—Cl1119.4 (2)C20—C21—C16120.8 (2)
C5—C4—C3119.0 (2)C20—C21—H21119.6
C5—C4—H4120.5C16—C21—H21119.6
C3—C4—H4120.5N2—C22—C16126.2 (2)
C4—C5—C6123.5 (3)N2—C22—H22116.9
C4—C5—Br1119.0 (2)C16—C22—H22116.9
C6—C5—Br1117.4 (2)C28—C23—C24122.0 (3)
O1—C6—C5119.4 (2)C28—C23—N2119.3 (2)
O1—C6—C1125.1 (2)C24—C23—N2118.5 (2)
C5—C6—C1115.6 (2)C25—C24—C23117.4 (3)
N1—C7—C1127.0 (2)C25—C24—C29121.0 (3)
N1—C7—H7116.5C23—C24—C29121.6 (3)
C1—C7—H7116.5C26—C25—C24121.9 (3)
C13—C8—C9122.2 (2)C26—C25—H25119.1
C13—C8—N1118.7 (2)C24—C25—H25119.1
C9—C8—N1119.0 (2)C27—C26—C25119.5 (3)
C10—C9—C8118.1 (2)C27—C26—H26120.2
C10—C9—C14119.8 (3)C25—C26—H26120.2
C8—C9—C14122.0 (2)C26—C27—C28121.5 (3)
C11—C10—C9120.8 (3)C26—C27—H27119.2
C11—C10—H10119.6C28—C27—H27119.2
C9—C10—H10119.6C27—C28—C23117.6 (3)
C12—C11—C10119.9 (3)C27—C28—C30120.7 (3)
C12—C11—H11120.0C23—C28—C30121.7 (3)
C10—C11—H11120.0C24—C29—H29A109.5
C11—C12—C13121.7 (3)C24—C29—H29B109.5
C11—C12—H12119.2H29A—C29—H29B109.5
C13—C12—H12119.2C24—C29—H29C109.5
C8—C13—C12117.2 (3)H29A—C29—H29C109.5
C8—C13—C15122.5 (2)H29B—C29—H29C109.5
C12—C13—C15120.3 (2)C28—C30—H30A109.5
C9—C14—H14A109.5C28—C30—H30B109.5
C9—C14—H14B109.5H30A—C30—H30B109.5
H14A—C14—H14B109.5C28—C30—H30C109.5
C9—C14—H14C109.5H30A—C30—H30C109.5
H14A—C14—H14C109.5H30B—C30—H30C109.5
O2—Co1—O1—C6106.0 (2)C14—C9—C10—C11177.0 (3)
N2—Co1—O1—C6145.6 (2)C9—C10—C11—C121.0 (5)
N1—Co1—O1—C616.2 (2)C10—C11—C12—C130.3 (4)
O1—Co1—O2—C17135.3 (2)C9—C8—C13—C123.5 (4)
N2—Co1—O2—C1714.5 (2)N1—C8—C13—C12172.1 (2)
N1—Co1—O2—C17115.9 (2)C9—C8—C13—C15175.2 (3)
O2—Co1—N1—C7102.8 (2)N1—C8—C13—C159.2 (4)
O1—Co1—N1—C716.8 (2)C11—C12—C13—C82.5 (4)
N2—Co1—N1—C7141.1 (2)C11—C12—C13—C15176.1 (3)
O2—Co1—N1—C877.5 (2)Co1—O2—C17—C18169.79 (18)
O1—Co1—N1—C8162.86 (19)Co1—O2—C17—C1611.6 (4)
N2—Co1—N1—C838.5 (2)C21—C16—C17—O2178.5 (2)
O2—Co1—N2—C2210.4 (2)C22—C16—C17—O20.2 (4)
O1—Co1—N2—C22129.8 (2)C21—C16—C17—C180.1 (4)
N1—Co1—N2—C22116.1 (2)C22—C16—C17—C18178.8 (2)
O2—Co1—N2—C23172.64 (18)O2—C17—C18—C19178.6 (2)
O1—Co1—N2—C2353.3 (2)C16—C17—C18—C190.1 (4)
N1—Co1—N2—C2360.8 (2)O2—C17—C18—Br21.4 (3)
C6—C1—C2—C30.8 (4)C16—C17—C18—Br2179.94 (18)
C7—C1—C2—C3175.6 (2)C17—C18—C19—C200.2 (4)
C1—C2—C3—C42.7 (4)Br2—C18—C19—C20179.80 (19)
C1—C2—C3—Cl1179.1 (2)C18—C19—C20—C210.4 (4)
C2—C3—C4—C52.2 (4)C18—C19—C20—Cl2179.7 (2)
Cl1—C3—C4—C5179.6 (2)C19—C20—C21—C160.4 (4)
C3—C4—C5—C61.9 (4)Cl2—C20—C21—C16179.75 (19)
C3—C4—C5—Br1175.9 (2)C17—C16—C21—C200.1 (4)
Co1—O1—C6—C5173.34 (18)C22—C16—C21—C20178.7 (2)
Co1—O1—C6—C16.3 (4)C23—N2—C22—C16179.5 (2)
C4—C5—C6—O1174.4 (3)Co1—N2—C22—C163.6 (4)
Br1—C5—C6—O17.7 (3)C21—C16—C22—N2177.4 (2)
C4—C5—C6—C15.2 (4)C17—C16—C22—N23.8 (4)
Br1—C5—C6—C1172.68 (19)C22—N2—C23—C2876.9 (3)
C2—C1—C6—O1175.1 (3)Co1—N2—C23—C28100.1 (2)
C7—C1—C6—O18.8 (4)C22—N2—C23—C24106.8 (3)
C2—C1—C6—C54.5 (4)Co1—N2—C23—C2476.1 (3)
C7—C1—C6—C5171.6 (2)C28—C23—C24—C252.3 (4)
C8—N1—C7—C1171.2 (2)N2—C23—C24—C25173.9 (2)
Co1—N1—C7—C18.4 (4)C28—C23—C24—C29177.2 (3)
C2—C1—C7—N1176.6 (3)N2—C23—C24—C296.6 (4)
C6—C1—C7—N17.2 (4)C23—C24—C25—C260.1 (4)
C7—N1—C8—C13110.2 (3)C29—C24—C25—C26179.4 (3)
Co1—N1—C8—C1370.2 (3)C24—C25—C26—C271.8 (5)
C7—N1—C8—C974.1 (3)C25—C26—C27—C281.6 (5)
Co1—N1—C8—C9105.6 (3)C26—C27—C28—C230.5 (5)
C13—C8—C9—C102.2 (4)C26—C27—C28—C30178.3 (3)
N1—C8—C9—C10173.4 (2)C24—C23—C28—C272.5 (4)
C13—C8—C9—C14179.3 (3)N2—C23—C28—C27173.7 (2)
N1—C8—C9—C143.7 (4)C24—C23—C28—C30176.3 (3)
C8—C9—C10—C110.1 (4)N2—C23—C28—C307.6 (4)
Selected bond lengths (Å) top
Co1—O21.9006 (18)Co1—N21.983 (2)
Co1—O11.9144 (18)Co1—N12.000 (2)
Acknowledgements top

The authors are grateful for financial support from the Science & Technology Project Foundation of Xi'an (grant No. CX12189WL19), the Special Foundation of the Education Department of Shaanxi Province (grant No. 11 J K0577) and the Key Disciplinary Areas of Analytical Chemistry of Shaanxi Province, People's Republic of China.

references
References top

Billson, T. S., Crane, J. D., Fox, O. D. & Heath, S. L. (2000). Inorg. Chem. Commun. 3, 718–720.

Carlton, L. D., Schmith, V. D. & Brouwer, K. L. R. (1995). Prostaglandins, 50, 341–347.

Feng, Y., Liu, G., Tian, X. M., Wang, J. D. & Wang, W. (2008). Chin. J. Struct. Chem. 27, 455–460.

Liu, H., Huang, J. L. & Feng, Y. L. (2009). Chin. J. Struct. Chem. 28, 718–722.

Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.