[Journal logo]

Volume 69 
Part 3 
Pages o426-o427  
March 2013  

Received 18 February 2013
Accepted 18 February 2013
Online 23 February 2013

Key indicators
Single-crystal X-ray study
T = 295 K
Mean [sigma](C-C) = 0.003 Å
R = 0.048
wR = 0.135
Data-to-parameter ratio = 18.2
Details
Open access

(2E)-1-(2-Methyl-4-phenylquinolin-3-yl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one

aDepartment of Chemistry, BITS, Pilani-K. K. Birla Goa Campus, Goa 403 726, India,bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
Correspondence e-mail: edward.tiekink@gmail.com

In the title compound, C24H19NOS, the quinoline residue (r.m.s. deviation = 0.018 Å) is essentially orthogonal to both the phenyl [dihedral angle = 88.95 (8)°] and 2-thienyl [81.98 (9)°] rings. The carbonyl O atom lies to one side of the quinoline plane, the carbonyl C atom is almost coplanar and the remaining atoms of the chalcone residue lies to the other side, so that overall the molecule has an L-shape. The conformation about the ethylene bond [1.340 (2) Å] is E. In the crystal, a supramolecular chain with the shape of a square rod aligned along the b-axis direction is sustained by C-H...[pi] interactions, the [pi]-systems being the heterocyclic rings.

Related literature

For background details and the biological application of quinoline and quinoline chalcones, see: Joshi et al. (2011[Joshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872-876.]); Prasath & Bhavana (2012[Prasath, R. & Bhavana, P. (2012). Heteroat. Chem. 23, 525-530.]); Kalanithi et al. (2012[Kalanithi, M., Rajarajan, M., Tharmaraj, P. & Sheela, C. D. (2012). Spectrochim. Acta A, 87, 155-162.]); Prasath et al. (2013[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013). J. Organomet. Chem. 726, 62-70.]). For the structure of the dimethyl-substituted quinolinyl compound without a methyl substituent on the 2-thienyl ring, see: Prasath et al. (2011[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2283-o2284.]).

[Scheme 1]

Experimental

Crystal data
  • C24H19NOS

  • Mr = 369.46

  • Triclinic, [P \overline 1]

  • a = 10.0815 (7) Å

  • b = 10.2956 (7) Å

  • c = 10.5403 (7) Å

  • [alpha] = 71.013 (6)°

  • [beta] = 78.697 (5)°

  • [gamma] = 70.412 (6)°

  • V = 969.99 (11) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 0.18 mm-1

  • T = 295 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.780, Tmax = 1.000

  • 8430 measured reflections

  • 4473 independent reflections

  • 3484 reflections with I > 2[sigma](I)

  • Rint = 0.025

Refinement
  • R[F2 > 2[sigma](F2)] = 0.048

  • wR(F2) = 0.135

  • S = 1.03

  • 4473 reflections

  • 246 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.28 e Å-3

  • [Delta][rho]min = -0.26 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the S1,C20-C23 and N1,C1,C6-C9 rings, respectively.

D-H...A D-H H...A D...A D-H...A
C4-H4...Cg1i 0.93 2.88 3.688 (2) 146
C22-H22...Cg2ii 0.93 2.60 3.457 (2) 153
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7043 ).


Acknowledgements

PB and RP gratefully acknowledge the Council of Scientific and Industrial Research (CSIR), India, for research grant 02 (0076)/12/EMR-II and Senior Research Fellowship (09/919/(0014)/2012 EMR-I), respectively. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Joshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872-876.  [CrossRef] [ChemPort]
Kalanithi, M., Rajarajan, M., Tharmaraj, P. & Sheela, C. D. (2012). Spectrochim. Acta A, 87, 155-162.  [ChemPort]
Prasath, R. & Bhavana, P. (2012). Heteroat. Chem. 23, 525-530.  [ISI] [CrossRef] [ChemPort]
Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2283-o2284.  [CSD] [CrossRef] [ChemPort] [details]
Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013). J. Organomet. Chem. 726, 62-70.  [CSD] [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]


Acta Cryst (2013). E69, o426-o427   [ doi:10.1107/S1600536813004753 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.